
Manual de Instalação, Operação e Manutenção

Série 42XQW

MHXIFLEX

1 - Prefácio

Este manual é destinado aos técnicos devidamente treinados e qualificados, no intuito de auxiliar nos procedimentos de instalação e manutenção.

Cabe ressaltar que quaisquer reparos ou serviços podem ser perigosos se forem realizados por pessoas não habilitadas. Somente profissionais treinados devem instalar, dar partida inicial e prestar qualquer manutenção nos equipamentos objetos deste manual.

(I) IMPORTANTE

Para a instalação correta da unidade, deve-se ler o manual com muita atenção antes de colocá-la em funcionamento.

Se após a leitura você ainda necessitar de informações adicionais entre em contato conosco!

Endereço para contato:

Climazon Industrial Ltda

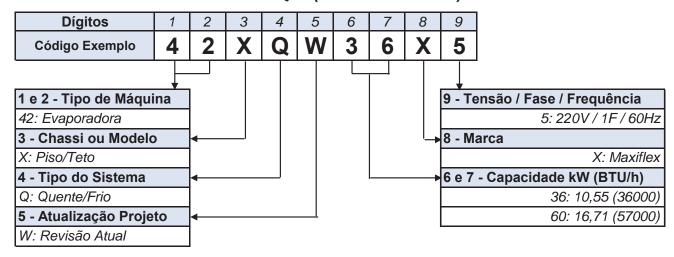
Av. Torquato Tapajós, 7937 Lotes 14 e 14B - Bairro Tarumã

Manaus - AM

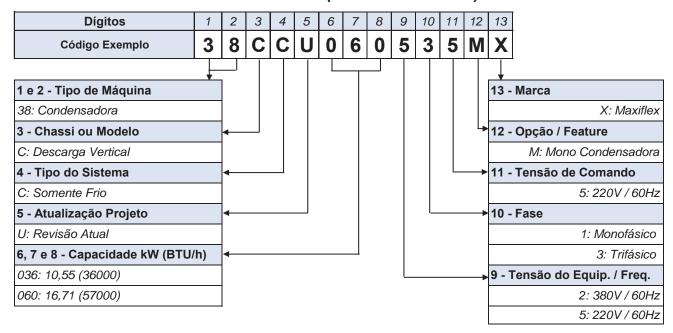
CEP: 69.041-025

Site: www.carrierdobrasil.com.br

Telefones para Contato:
4003.6707 - Capitais e Regiões Metropolitanas
0800.887.6707 - Demais localidades


ÍNDICE

I - Prefácio	3
2 - Nomenclatura	5
3 - Pré-Instalação	6
4 - Instruções de Segurança	6
4.1 - Etiqueta de Capacidade	7
5 - Instalação	
5.1 - Recebimento e Inspeção das Unidades	8
5.2 - Recomendações Gerais	9
5.3 - Kit Renovação de Ar	10
5.4 - Procedimentos Básicos para Instalação	10
5.5 - Instalação das Unidades Condensadoras	11
5.6 - Instalação das Unidades Evaporadoras	14
6 - Tubulações de Interligação	
6.1 - Interligação entre Unidades - Desnível e Comprimento de Linha	20
6.2 - Instalação de Linhas Longas	23
6.3 - Conexões de Interligação	25
6.4 - Procedimento para Flangeamento e Conexão das Tubulações de Interligação	27
6.5 - Procedimento de Brasagem	29
6.6 - Suspensão e Fixação das Tubulações de Interligação	29
6.7 - Procedimento de Vácuo das Tubulações de Interligação	29
6.8 - Adição de Carga de Refrigerante	31
6.9 - Refrigerante HFC-410A	34
6.10 - Adição de Óleo	34
7 - Sistema de Expansão	35
8 - Instalação, Interligações e Diagramas Elétricos	
8.1 - Instruções Gerais para Instalação Elétrica	36
8.2 - Quadro Elétrico	37
8.3 - Interligações Elétricas	39
8.4 - Diagrama Elétrico Unidades Evaporadoras	40
8.5 - Diagramas Elétricos Unidades Condensadoras	41
9 - Configurações do Sistema	
9.1 - Seleção de Configuração - Somente Frio ou Quente-Frio (Não disponível)	44
9.2 - Seleção de Configuração - Retorno Após Falha de Energia	44
9.3 - Operação de Emergência	45
9.4 - Diagnóstico de Falhas	45
10 - Partida Inicial	46
II - Manutenção	
II.I - Generalidades	47
11.2 - Manutenção Preventiva	47
II.3 - Manutenção Corretiva	48
11.4 - Limpeza Interna do Sistema	48
11.5 - Detecção de Vazamentos	48
II.6 - Proteção do Display do Receptor da Unidade Evaporadora	49
12 - Análise de Ocorrências	50
13 - Planilha de Manutenção Preventiva	51
14 - Fluxograma Frigorígeno	52
15 - Características Técnicas Gerais	53
Anexo I - Tabela de Conversão Refrigerante HFC-410A	
Anexo II - Etiqueta de Capacidade Unidades Condensadoras	
I I I I I I I I I I I I I I I I I I I	



2 - Nomenclatura

UNIDADES EVAPORADORAS 42XQW (Unidades Internas)

UNIDADES CONDENSADORAS 38CCU (Unidades Externas)

5

3 - Pré-Instalação

Antes de iniciar a instalação das unidades evaporadora e condensadora é de extrema importância que se verifiquem os seguinte itens:

- Adequação do equipamento para a carga térmica do ambiente; para maiores informações consulte um credenciado Midea Carrier ou utilize o dimensionador virtual do site: www.carrierdobrasil.com.br
- Compatibilidade entre as unidades evaporadora e condensadora. As opções disponíveis e aprovadas pela fábrica encontram-se no item Características Técnicas Gerais deste manual
- Tensão da rede onde os equipamentos serão instalados. Em caso de dúvida consulte um credenciado.
- IMPORTANTE: O Grau de Proteção deste equipamento é IPXO para as unidades evaporadoras e IPX4 para as unidades condensadoras.

ATENÇÃO

A adaptação e a preparação do local para a instalação do produto, tais como: alvenaria, carpintaria, gesso, rebaixamento, mobiliário, preparação da rede elétrica do ambiente (tomada, disjuntor, bitola de cabos, eletroduto, etc), é de inteira responsabilidade do usuário/consumidor.

NOTA

- Algumas figuras/fotos apresentadas neste manual podem ter sido feitas com equipamentos similares ou com a retirada de proteções/ componentes, para facilitar a representação, entretanto o modelo real adquirido é que deverá ser considerado.
- A critério da fábrica, e tendo em vista o aperfeiçoamento do produto, as características daqui constantes poderão ser alteradas a qualquer momento sem aviso prévio.

4 - Instruções de Segurança

As novas unidades evaporadoras em conjunto com as unidades condensadoras foram projetadas para oferecer um serviço seguro e confiável quando operadas dentro das especificações previstas em projeto; todavia, devido a esta mesma concepção, aspectos referentes à instalação, partida inicial e manutenção devem ser rigorosamente observados.

ATENÇAO

- Mantenha o extintor de incêndio sempre próximo ao local de trabalho.
 Cheque o extintor periodicamente para certificar-se que ele está com a carga completa e funcionando perfeitamente.
- Quando estiver trabalhando no equipamento, atente sempre para todos os avisos de precaução contidos nas etiquetas presas às unidades.
- Siga sempre todas as normas de segurança aplicáveis e utilize roupas e equipamentos de proteção individual. Utilize luvas e óculos de proteção quando manipular as unidades ou o refrigerante do sistema.

ATENÇÃO

- Verifique as massas (pesos) e dimensões das unidades para assegurar-se de um manejo adequado e com segurança.
- Saiba como manusear o equipamento de oxiacetileno seguramente.
 Deixe o equipamento na posição vertical dentro do veículo e também no local de trabalho. Cilindros de acetileno não podem ser deitados.
- Utilize Nitrogênio seco para pressurizar e checar vazamentos do sistema.
 Utilize um bom regulador. Cuide para não exceder a pressão de teste nos compressores.
- Antes de trabalhar em qualquer uma das unidades desligue sempre a alimentação de força, chave geral, disjuntor, etc.
- Nunca introduza as mãos ou qualquer outro objeto dentro das unidades enquanto estas estiverem em funcionamento.

A PERIGO

Risco de explosão!

- JAMAIS utilize chama viva para detectar vazamentos na instalação ou nas unidades. Utilize equipamentos e procedimentos recomendados para testar a ocorrência de vazamentos.
- JAMAIS comprimir ar utilizando o compressor da unidade.
- A não observância destas instruções pode causar dano potencial ao produto, à instalação e à integridade física de pessoas que estejam nas proximidades durante o(s) procedimento(s).

4.1 - Etiqueta de Capacidade

A etiqueta de capacidade está localizada internamente na unidade evaporadora. Nesta etiqueta constam além do modelo e número de série, dados técnicos da evaporadora tais como: tensão, frequência, fase, capacidade, consumo e corrente.

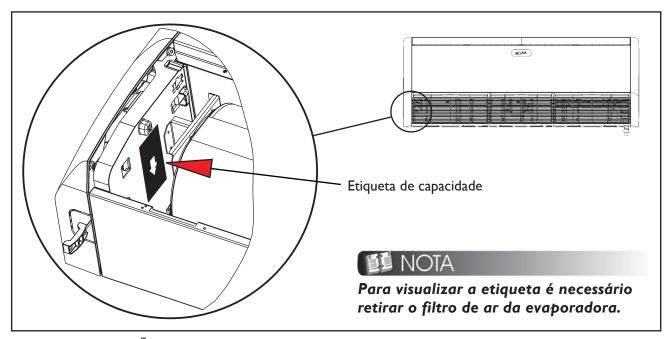


FIG. I - LOCALIZAÇÃO DA ETIQUETA DE CAPACIDADE

5 - Instalação

5.1 - Recebimento e Inspeção das Unidades

- Para evitar danos durante a movimentação ou transporte, não remova a embalagem das unidades até chegar ao local definitivo de instalação.
- Evite que cordas, correntes ou outros dispositivos encostem nas unidades.
- · Respeite o limite de empilhamento indicado na embalagem das unidades.
- Não balance a unidade condensadora durante o transporte nem incline-a mais do que 15° em relação à vertical.
- Para manter a garantia, evite que as unidades fiquem expostas a possíveis acidentes de obra, providenciando seu imediato translado para o local de instalação ou outro local seguro.
- Ao remover as unidades das embalagens e retirar as proteções de poliestireno expandido (isopor) não descarte imediatamente os mesmos pois poderão servir eventualmente como proteção contra poeira, ou outros agentes nocivos até que a obra e/ou instalação esteja completa e o sistema pronto para entrar em operação.

ATENÇÃO

Nunca suspenda ou carregue a unidade evaporadora pelas laterais plásticas. Segure-a nas partes metálicas conforme figura 2.

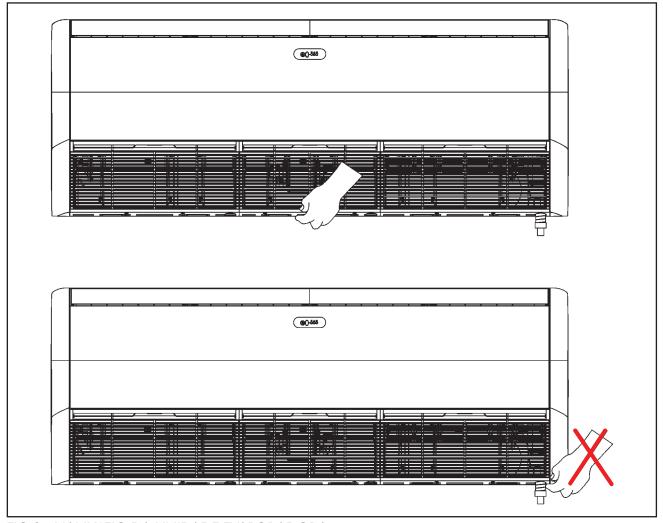


FIG. 2 - MANUSEIO DA UNIDADE EVAPORADORA

5.2 - Recomendações Gerais

Em primeiro lugar consulte as normas ou códigos aplicáveis à instalação do equipamento no local selecionado para assegurar-se que o sistema idealizado estará de acordo com as mesmas.

Consulte por exemplo a NBR5410 "Instalações Elétricas de Baixa Tensão".

Faça também um planejamento cuidadoso da localização das unidades para evitar eventuais interferências com quaisquer tipo de instalações já existentes (ou projetadas), tais como instalação elétrica, canalizações de água, esgoto, etc.

Instale as unidades de forma que elas fiquem livres de quaisquer tipos de obstrução das tomadas de ar de retorno ou insuflamento.

Escolha locais com espaços que possibilitem reparos ou serviços de quaisquer espécies e possibilitem a passagem das tubulações de interligação (tubos que ligam as unidades, fiação elétrica e dreno).

Lembre-se de que as unidades devem estar niveladas após a sua instalação.

Verificar se o local externo é isento de poeira ou outras partículas em suspensão que por ventura possam vir a obstruir o aletado da unidade condensadora.

É imprescindível que a unidade evaporadora possua linha hidráulica para drenagem do condensado.

Recomenda-se, o uso de Starter código KAACS0201PTC para as unidades monofásicas de 36.000 BTU/h (10,55 kW), em casos onde, comprovadamente a tensão nominal for inferior a 208V.

O Starter é vendido separadamente.

Ferramentas para instalação:

As ferramentas relacionadas a seguir são necessárias e recomendadas para uma correta instalação do equipamento.

Item	Ferramenta	Item	Ferramenta	
T	Bomba de vácuo	14	Parafusadeira (recomendável)	
2	Conjunto Manifold (R-410)	15	Furadeira e brocas	
3	Cortador e curvador de tubos	16	Régua de nível	
4	Flangeador de tubos	17	Fitas isolante e veda-rosca	
5	Chave de torque (Torquímetro)	18	Fita vinílica de proteção	
6	Conjunto chaves Philips / fenda		Trena	
7	Chave de porca ou chave inglesa (duas)	20	Alicate pico e alicate corte universal	
8	Conjunto chaves Allen	21	Talhadeira e martelo	
9	Chave de bornes	22	Bisnaga óleo refrigerante	
10	Multímetro / Alicate amperímetro	23	Maçarico de solda (para máquinas grandes)	
П	Vacuômetro	24	Cilindro extra de gás (para carga adicional)	
12	Serra copo alvenaria	25	Cilindro de Nitrogênio com regulador	
13 Serra de metal		26	Balança digital	

5.3 - Kit Renovação de Ar

Há disponível também um kit renovação de ar para maior conforto e comodidade na operação de seus condicionadores de ar. O kit abaixo descrito com seu respectivo código é vendidos sob consulta nos revendedores/representantes autorizados.

Descrição do Kit	Código
Kit Renovação de Ar	K42XAR

As instruções de instalação do kit Renovação de Ar estão detalhadas no item 5.6.6 deste manual.

5.4 - Procedimentos Básicos para Instalação

UNIDADE EVAPORADORA **UNIDADE CONDENSADORA** SELEÇÃO DO LOCAL SELEÇÃO DO LOCAL ∇ ∇ ESCOLHA DO PERFIL DA INSTALAÇÃO INSTALAÇÃO DA TUBULAÇÃO HIDRÁULICA PARA DRENO ∇ FURAÇÃO NO PISO - TETO / POSICIONAMENTO **MONTAGEM** POSICIONAMENTO DAS TUBULAÇÕES DE INTERLIGAÇÃO INTERLIGAÇÃO CONEXÃO DAS TUBULAÇÕES DE INTERLIGAÇÃO INSTALAÇÃO DA TUBULAÇÃO HIDRÁULICA INTERLIGAÇÃO ELÉTRICA PARA DRENO ∇ ∇ ACABAMENTO FINAL MONTAGEM

5.5 - Instalação Unidades Condensadoras

Quando da instalação das unidades deve-se tomar as seguintes precauções:

- Selecionar um lugar onde não haja circulação constante de pessoas.
- Selecionar um lugar o mais seco e ventilado possível.
- Evitar instalar próximo a fontes de calor ou vapores, exaustores ou gases inflamáveis.
- Evitar instalar em locais onde o equipamento ficará exposto a ventos predominantes, chuva forte frequente e umidade/poeira excessivas.
- Evitar instalar em locais irregulares, desnivelados, sobre gramas ou superfícies macias (a unidade deve estar nivelada).
- Recomendamos o uso de calços de borracha junto aos pés da unidade para evitar ruídos indesejáveis.
- Não instalar as unidades de maneira que a descarga de ar de uma unidade seja a tomada de ar da outra.
- Obedecer os espaços requeridos para instalação e circulação de ar conforme figuras a seguir.

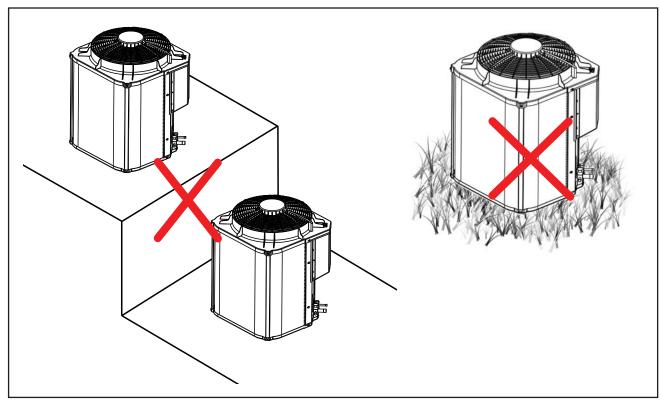


FIG. 3 - EVITAR INSTALAÇÕES NESTAS CONDIÇÕES

A instalação nos locais abaixo descritos podem causar danos ou mau funcionamento do equipamento:

- Local com óleo de máquinas;
- · Local com atmosfera sulfurosa;
- Local onde equipamentos de rádio, máquinas de soldar, equipamentos médicos que geram ondas de alta frequência e unidades com controle remoto.

NOTA

Verifique a existência de um perfeito escoamento através da hidráulica de drenagem (se houver) colocando água dentro da unidade condensadora.

MHXIFLEX

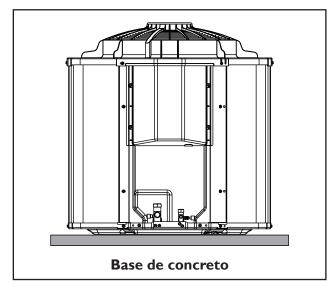


FIG. 4 - CALÇOS RECOMENDADOS PARA UNIDADES CONDENSADORAS

(IMPORTANTE)

É importante que a instalação seja feita sobre uma superfície firme e resistente; recomendamos uma base de concreto, e sempre que possível utilizando-se calços de borracha entre ambos, para evitar ruídos indesejáveis.

Dimensonal das Unidades Condensadoras 38CCU

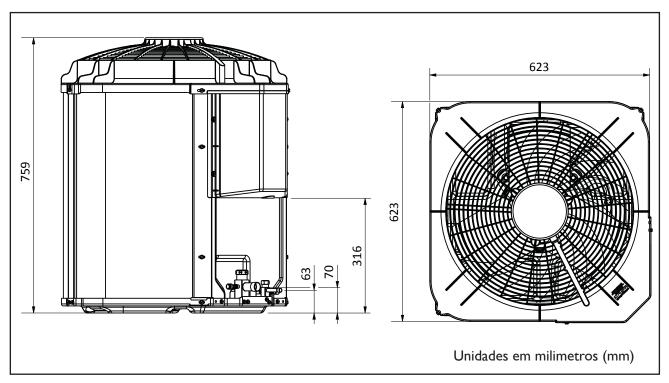


FIG. 5 - DIMENSIONAL

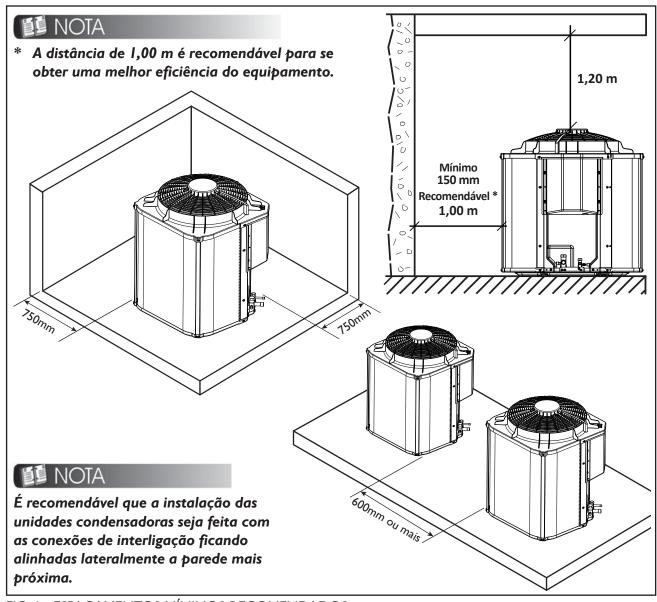


FIG. 6 - ESPAÇAMENTOS MÍNIMOS RECOMENDADOS

III NOTA

Para unidades condensadoras montadas com as caixas elétricas voltadas para o mesmo lado (uma de frente para outra), recomenda-se um espaçamento de 750 mm.

Para unidades condensadoras montadas com as caixas elétricas uma para cada lado (uma de costas para outra), recomenda-se um espaçamento de 600 mm.

Quando a instalação da unidade condensadora for feita sobre mão-francesa, deve-se observar os seguintes aspectos:

- As distâncias mínimas e os espaços recomendados, veja a figura 7.
- O correto dimensionamento das fixações para sustentação da unidade (mão-francesa, vigas, suportes, parafusos, etc).
 - Veja os dados dimensionais e o peso das unidades no item 15 deste manual.
- A fixação rígida dos suportes na parede, a fim de evitar-se acidentes, tais como quedas, etc.

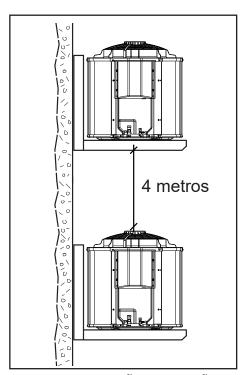


FIG. 7 - INSTALAÇÃO COM MÃO-FRANCESA

5.6 - Instalação das Unidades Evaporadoras

5.6.1 - Recomendações Gerais

Antes de executar a instalação, leia com atenção estas instruções a fim de ficar bem familiarizado com os detalhes da unidade.

Os pesos da unidade encontram-se no item 15 deste manual.

As regras apresentadas a seguir aplicam-se a todas as instalações:

- a) Faça um planejamento cuidadoso da localização das unidades para evitar eventuais interferências com quaisquer tipos de instalações já existentes (ou projetadas), tais como instalações elétricas, canalizações de água e esgoto, etc.
- b) Instale a unidade onde ela fique livre de qualquer tipo de obstrução da circulação de ar, tanto na saída de ar como no retorno de ar.
- c) Escolha um local com espaço suficiente que permita reparos ou serviços de manutenção em geral.
- d) O local deve possibilitar a passagem das tubulações (tubos do sistema, fiação elétrica e dreno).
- e) A unidade deve estar nivelada após a sua instalação.

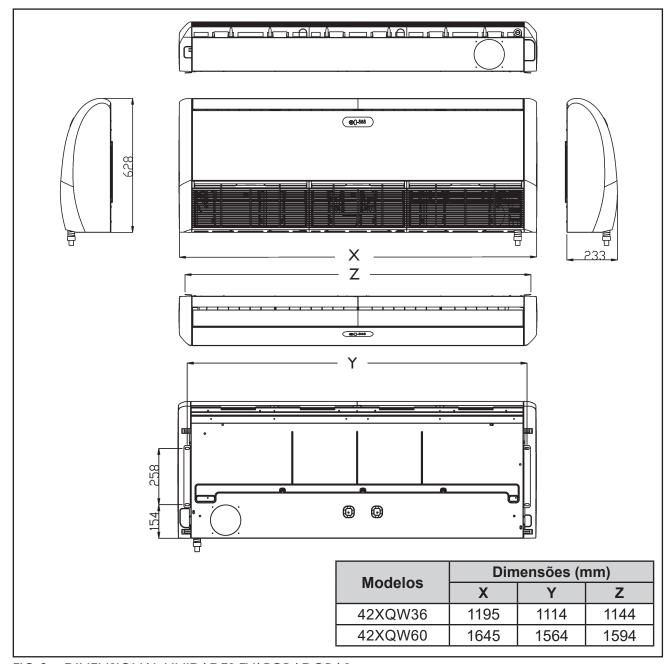


FIG. 8 - DIMENSIONAL UNIDADES EVAPORADORAS

5.6.2 - Colocação no Local

a) A unidade deve ser instalada somente nas posições horizontal no teto, vertical no piso ou vertical na parede (ver figura abaixo).

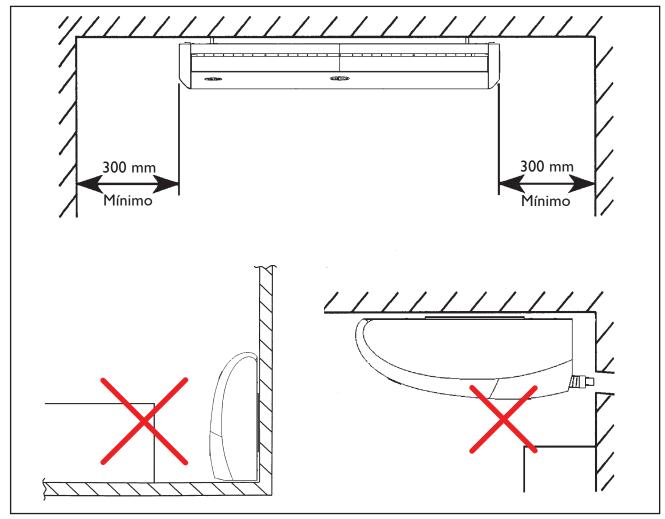


FIG. 9 - MONTAGENS DA UNIDADE

Para fixação da unidade evaporadora é necessário desmontar as tampas laterais conforme descrito no subitem 5.6.3.

b) A posição da unidade deve ser tal que permita a circulação uniforme do ar em todo o ambiente (ver figura abaixo).

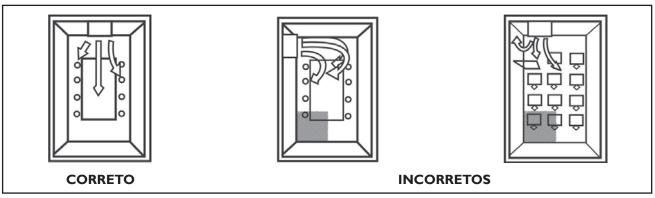


FIG. 10 - POSIÇÃO DA EVAPORADORA NO AMBIENTE

- c) A unidade evaporadora sai de fábrica equipada com dois (2) suportes de fixação para montagem suspensa no teto ou fixada à parede próxima (figura 11).
- d) A figura II indica a posição dos parafusos de montagem nos suportes de fixação.

Instale os suportes de fixação no teto através do uso dos parafusos de montagem, porcas e arruelas.

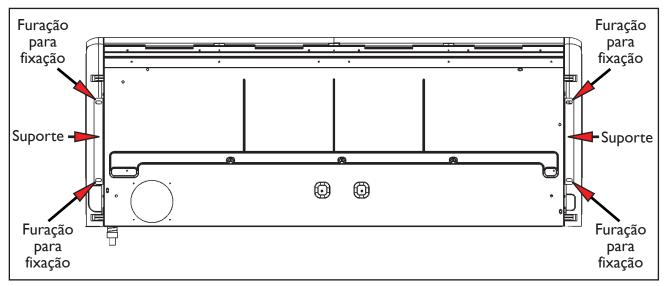


FIG. 11 - SUPORTES E FURAÇÃO PARA FIXAÇÃO

Evite a colocação da unidade evaporadora em locais onde haja a proximidade de obstáculos ao fluxo de ar, necessário para o perfeito funcionamento do aparelho.

5.6.3 - Desmontagem das Tampas Laterais

A figura 12 mostra a posição dos parafusos a serem retirados para se desmontar as laterais plásticas da evaporadora.

Para acessar os dois parafusos indicados com o número **1** é necessário retirarse os filtros de ar das extremidades.

Para acessar o parafuso indicado no detalhe (existente em ambas laterais), com o número 2 é necessário levantar-se o defletor horizontal.

A lateral direita dá acesso às conexões das tubulações de sucção, expansão e de drenagem; já a esquerda dá acesso à caixa elétrica e às conexões elétricas.

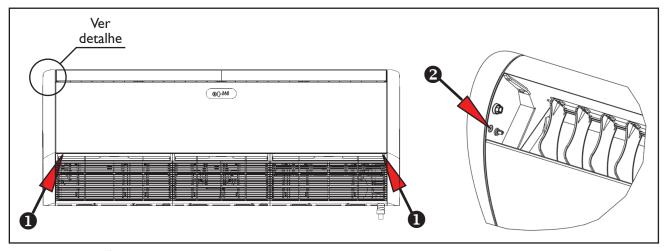


FIG. 12 - POSIÇÃO DOS PARAFUSOS PARA DESMONTAGEM DAS TAMPAS LATERAIS

5.6.4 - Desmontagem das Grelhas

A figura 13 mostra a posição dos parafusos a serem retirados para se desmontar as grelhas que dão acesso ao conjunto sistema de ventilação.

Para remover as grelhas é necessário primeiramente remover-se as tampas laterais.

Retire então os filtros e remova os três parafusos que prendem a parte superior de cada grelha - indicados com o número ① na figura.

A parte inferior das grelhas é somente encaixada na evaporadora.

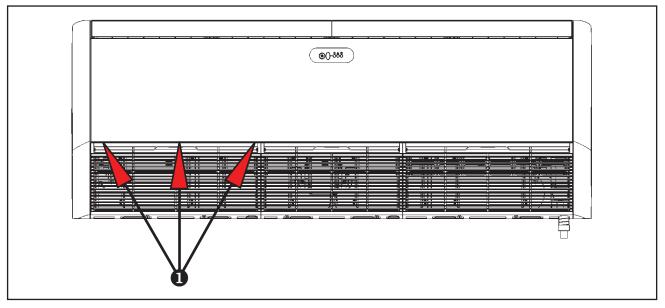


FIG. 13 - POSIÇÃO DOS PARAFUSOS PARA DESMONTAGEM DAS GRELHAS

5.6.5 - Drenagem de condensado

Conforme sua instalação no piso (console) ou no teto (under ceiling), existem diferentes posições por onde devem passar as tubulações para drenagem de condensado e também as tubulações de interligação.

As figuras 14, 15 e 16 mostram as instalações no piso e no teto e por onde devem passar estas tubulações, bem como onde se deve quebrar o recorte existente na tampa lateral direita da evaporadora.

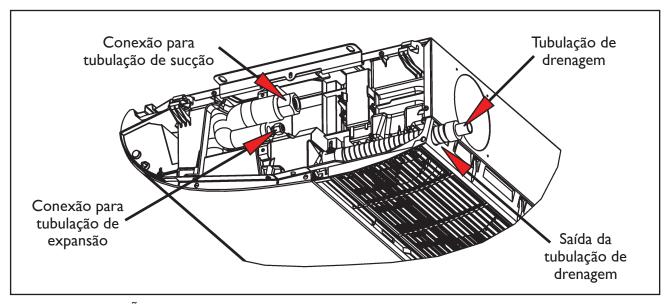


FIG. 14 - TUBULAÇÕES DE DRENO MONTAGEM TETO

MHXIFLEX

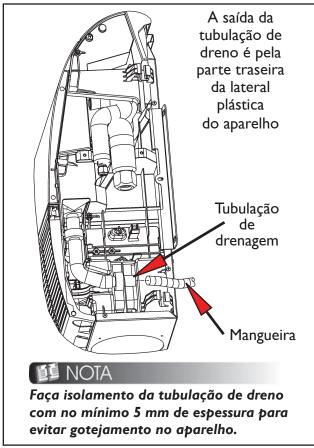


FIG. 15 - TUBULAÇÕES DE DRENO MONTAGEM PISO

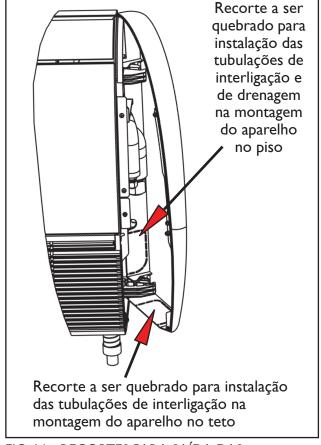


FIG. 16 - RECORTES PARA SAÍDA DAS TUBULAÇÕES

Para garantir uma drenagem eficaz:

a) Assegure-se que a unidade esteja nivelada, com uma pequena inclinação para o lado da drenagem - aproximadamente 2° (ver figura ao lado).

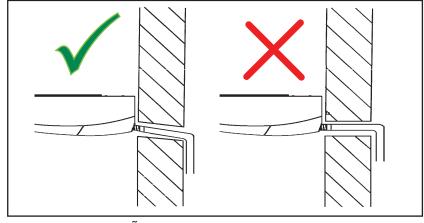


FIG. 17 - INCLINAÇÃO DRENAGEM

 b) A unidade usa drenagem por gravidade.
 A tubulação da drenagem, no entanto, deve possuir

declividade.

Evite as situações indicadas na figura ao lado.

FIG. 18 - SITUAÇÕES DE DRENAGEM INEFICAZ

5.6.6 - Instalação do Kit Renovação de Ar

As unidades estão preparadas para admissão de ar externo através da abertura de um "recorte" localizado na parte traseira ou inferior da unidade. Para abrir este "recorte" basta pressionar a chapa.

Utilize dutos - diâmetro interno: 150 mm - de poliester flexível (em espiral) ou de alumínio ondulado (resistentes a 60°C), revestidos exteriormente com materiais anticondensação.

Para dar acabamento à instalação, todas as tubulações não isoladas devem ser revestidas com material anticondensação.

(I) IMPORTANTE

A não observância destas instruções pode provocar gotejamento de água; a Midea Carrier declina-se de toda responsabilidade a este respeito.

Instalar uma grelha (tela) de admissão e filtro de ar a fim de evitar a entrada de poeira, pó ou outros e assim obstruir o trocador de calor da unidade evaporadora.

A montagem do filtro evita também a instalação de um separador para fechamento do conduto nos períodos em que o equipamento estiver sem uso.

É possível utilizar um ventilador extra para uma vazão de ar superior na entrada de ar, desde que esta não exceda 10% da vazão de ar total.

O motor do ventilador extra (opcional) para a entrada do ar exterior, deve ser fornecido separadamente e controlado através de um interruptor bipolar ON/OFF, com fusíveis de segurança (instalados no local).

Procedimento de instalação do kit:

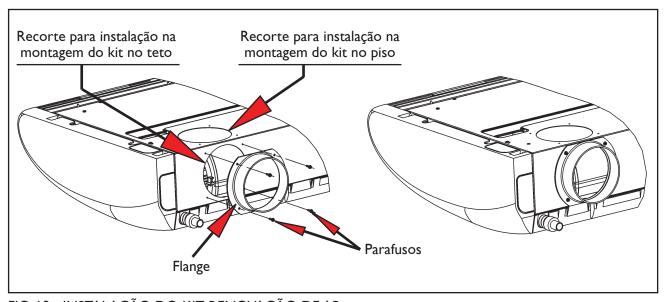


FIG. 19 - INSTALAÇÃO DO KIT RENOVAÇÃO DE AR

6 - Tubulações de Interligação

6.1 - Interligação entre Unidades - Desnível e Comprimento de Linha

Para interligar as unidades é necessário fazer a instalação das tubulações de interligação (linhas de sucção e expansão). Veja os *limites recomendados* na tabela abaixo.

Modelos	Comprimento Equivalente (m)	Desnível (m)	Comprimento Mínimo (m)	
036 / 060	30	10	2	

Para instalações onde o desnível e/ou o comprimento de interligação entre as unidades **excederem** o que está especificado na tabela acima, são necessárias algumas recomendações que possibilitarão um adequado rendimento do equipamento. Veja o subitem 6.2 - Instalação de Linhas Longas.

Procedimento de Interligação

- I° Elevar a linha de sucção acima da unidade evaporadora antes de ir para a unidade condensadora (0,2 m), quando a unidade evaporadora estiver acima ou no mesmo nível da unidade condensadora. Ver figura 20.
- 2º Fazer sifões nas subidas da linha de sucção, quando aplicado, a cada 3,0 m incluindo a base. Caso o desnível seja menor que 3 m faça apenas na base. Ver figura 20.

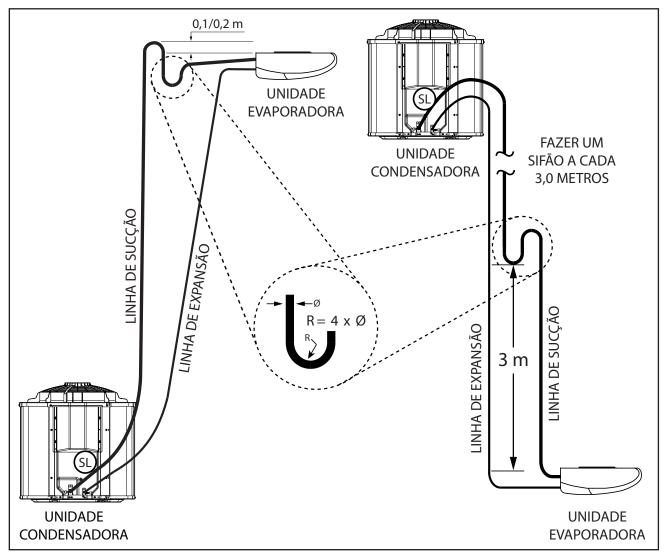


FIG. 20 - INSTALAÇÃO LINHAS DE INTERLIGAÇÃO

- 3º Inclinar as linhas horizontais de sucção no sentido do fluxo. Ver figura 20.
- 4º Isolar as linhas de expansão e sucção da radiação (além de bem isoladas termicamente) quando estiverem expostas ao sol.

I NOTA

- A Midea Carrier recomenda que no projeto de instalação se considere, sempre que possível, a menor distância (acima de 2 metros), o menor desnível e a menor quantidade de conexões entre as unidades evaporadora e condensadora.
- O Comprimento Linear (C.L) é o comprimento total do tubo a ser utilizado na interligação entre as unidades.
- O valor a ser considerado para o Comprimento Máximo Equivalente já inclui o valor do desnível entre as unidades e também as curvas e restrições da tubulação.

Exemplo de cálculo:

Para interligação de um sistema com modelos 036 cujo percurso da tubulação tem comprimento de 9 metros (C.L) e possui 6 curvas (número de conexões - N.C), o cálculo do Comprimento Máximo Equivalente (C.M.E) deve ser efetuado da seguinte maneira:

Fórmula: $C.M.E = C.L + (N.C \times 0,3)$

 $C.M.E = 9 + (6 \times 0.3)$

C.M.E = 10.8 metros

Os diâmetros das linhas de sucção e expansão serão obtidos na tabela a seguir:

O valor do C.M.E cálculado foi de 10,8 metros, ou seja, utilizaremos as colunas entre 10 - 20 metros, assim sendo para nosso sistema (036) os diâmetros recomendados são:

Para a tubulação de sucção: Ø 22,23 mm (7/8 in)

Para a tubulação de expansão: Ø 9,52 mm (3/8 in)

	C.M.E - Comprimento Máximo Equivalente							
elos	0 - 10 m		10 - 20 m		20 - 30 m			
Modelos	Ø Linha de Sucção mm (in)	Ø Linha de Expansão mm (in)	Ø Linha de Sucção mm (in)	Ø Linha de Expansão mm (in)	Ø Linha de Sucção mm (in)	Ø Linha de Expansão mm (in)		
036	19,05 (3/4)*	9,52 (3/8)	22,23 (7/8)	9,52 (3/8)	22,23 (7/8)	9,52 (3/8)		
060	22,23 (7/8)**	9,52 (3/8)	28,58 (1.1/8)	9,52 (3/8)	28,58 (1.1/8)	9,52 (3/8)		

^{*} Recomendável utilização linha 22,23 mm (7/8 in) para melhor eficiência.

(I) IMPORTANTE

A utilização de tubulações com diâmetro não recomendado na interligação entre unidades pode implicar em mau funcionamento do equipamento e até em quebra do compressor. A não observância das instruções e cálculo dos valores, bem como da correta utilização das tabelas, NÃO estarão cobertas pela garantia Midea Carrier.

^{**} Recomendável utilização linha 25,40 mm (1 in) para melhor eficiência.

ATENÇÃO

Para unidades com refrigerante HFC-410A:

A Midea Carrier recomenda as seguintes espessuras mínimas para as paredes das tubulações das linhas de interligação entre as unidades:

Diâmetro das linhas - mm (in)	Espessura dos tubos (mm)
6,35 (1/4) / 9,52 (3/8) / 12,70 (1/2) / 15,87 (5/8) / 19,05 (3/4)	0,80
22,22 (7/8)	1,32

A espessura mínima para as paredes das tubulações poderá ser menor que os valores recomendados acima, desde que a tubulação seja homologada para resistir a 3792 kPa (550 psig).

(IMPORTANTE

As instalações das linhas de expansão e sucção deverão ser feitas colocando-se "loops" em cada linha (figura 21a), para evitar ruídos devido a vibração do equipamento. Os "loops" podem eventualmente ser substituídos por tubos flexíveis (figura 21b).

O isolamento das linhas, em ambos casos, deverá ser feito separadamente.

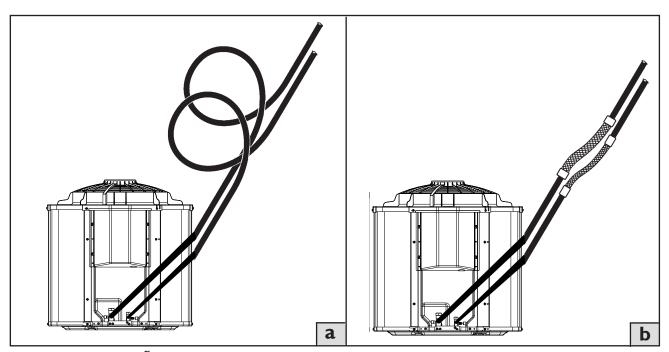


FIG. 21 - INSTALAÇÃO DOS LOOPS

Como as tubulações de interligação são feitas no campo, deve-se proceder a limpeza e a evacuação das linhas e da unidade evaporadora.

III NOTA

A limpeza deve ser feita fazendo-se circular nitrogênio através da tubulação do sistema.

A limpeza é extremamente importante, pois evita que sujidades resultantes da instalação fiquem dentro da tubulação e venham a causar problemas posteriormente.

6.2 - Instalação de Linhas Longas

Para instalações onde o desnível e/ou o comprimento de interligação entre as unidades for **superior** ao especificado no subitem 6.1 é necessário seguir os procedimentos, instruções e tabelas descritas na sequência:

Os procedimentos descritos são válidos apenas para instalações de equipamentos na versão SOMENTE FRIO.

A não observância dos valores recomendados nas tabelas, bem como dos procedimentos e instruções descritos, NÃO estarão cobertas pela garantia Midea Carrier.

I° Verificar se o comprimento, desnível e os diâmetros das tubulações estão dentro dos valores recomendados na tabela a seguir.

	sol	Comprimento Máximo		Desnível	Tipo de	Rit	ola		
	Modelos	Real (C.M.R)	Equivalente (C.M.E)	Máximo (D.M)	Linha	mm	(in)	Observações	
	036	Até	70 m	25 m	Expansão	9,52	(3/8)	-	
	030	50 m*	70111	23 111	Sucção	25,40	(1)	-	
	060	Até 50 m*	l /() m	25 m	Expans 25 m	Evnanção	9,52	(3/8)	Até 35 m desde que a condensadora não esteja a mais de 15 m abaixo da evaporadora.
						Ехрапѕао	12,70	(1/2)	Acima de 35 m desde que a condensadora esteja a mais de 15 m abaixo da evaporadora.
					Sucção	34,92	(1.3/8)	Linha horizontal ou para trechos em descida.	
						31,75	(1.1/4)	Linha em subida.	

Observações:

* Caso a unidade condensadora esteja abaixo da unidade evaporadora:

C.M.R = C.M.E - D.M

Onde:

C.M.R - Comprimento Máximo Real da Linha

C.M.E - Comprimento Máximo Equivalente

D.M - Desnível Máximo

O comprimento máximo equivalente depende do número de curvas (conexões) utilizados na instalação. Veja fórmula na primeira Nota do subitem 6.1.

Veja o exemplo abaixo para compreender melhor como fazer o cálculo.

Considerando-se uma unidade condensadora de 36.000 BTU/h (10,55 kW) colocada abaixo da unidade evaporadora, um desnível de 6 metros e o valor de comprimento máximo equivalente usado no exemplo do subitem 6.1 (12,5 metros), teremos então:

C.M.R = C.M.E - D.M C.M.R = 12,5 - 6C.M.R = 6,5 metros

- 2º Elevar a linha de sucção acima da unidade evaporadora antes de ir para a unidade condensadora (0,2 m), quando a unidade evaporadora estiver acima ou no mesmo nível da unidade condensadora. Ver figura 20.
- 3º Colocar uma válvula solenóide na linha de expansão (junto a saída da unidade condensadora se a unidade evaporadora estiver acima ou junto a entrada da unidade evaporadora se a unidade condensadora estiver acima), que abra junto com a partida do compressor e feche depois do desligamento do mesmo (30s); este tempo deve ser passível de regulagem caso o compressor apresente dificuldade de partir novamente.
 - Nas unidades acima de 36.000 BTU/h (com sistema de expansão através de pistão), a válvula solenóide deverá ser instalada entre a válvula de serviço e o pistão. Nas unidades com compressor trifásico, a válvula solenóide pode abrir e fechar junto com a partida e desligamento do compressor respectivamente.
- 4° Fazer sifões nas subidas da linha de sucção, quando aplicado, a cada 3,0 m incluindo a base. Caso o desnível seja menor que 3 m faça apenas na base. Ver figura 20.
- 5º Inclinar as linhas horizontais de sucção no sentido do fluxo. Ver figura 20
- 6º Isolar as linhas de expansão e sucção da radiação (além de bem isoladas termicamente) quando estiverem expostas ao sol.
- 7º Deve ser instalado um separador de líquido (isolado termicamente e da radiação - que poderá ficar fora da unidade externa), na sucção junto a entrada da unidade condensadora, com capacidade volumétrica de retenção de líquido refrigerante como indicado na tabela abaixo.

Veja a posição conforme a indicação SL na figura 20.

Modelos	Volume (ml)		
036	1250		
060	2000		

Em caso de qualquer dúvida, deve-se entrar em contato com o coordenador técnico de pós-venda da sua região.

24

6.3 - Conexões de Interligação

6.3.1 - Unidades Evaporadoras 42XQW

As unidades evaporadoras 42XQW possuem conexões do tipo porca-flange na saída das conexões de expansão e sucção acopladas as respectivas válvulas de serviço. Veja figura 22.

As válvulas de serviço só devem ser abertas após ter sido feita a conexão das tubulações de interligação, evacuação e complemento da carga sob pena de perder toda a carga de refrigerante da unidade condensadora.

(I) IMPORTANTE

Após completado o procedimento de interligação das tubulações de refrigerante, recolocar a porca do corpo da válvula.

Faixa aperto: 15 Nm à 18 Nm

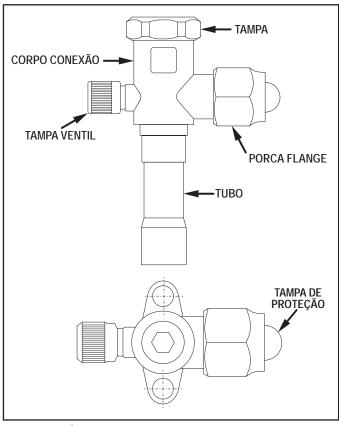


FIG. 22 - VÁLVULA DE SERVIÇO DAS LINHAS DE SUCÇÃO E EXPANSÃO

Ao retirarmos a porca do corpo da válvula (figura 23) encontraremos uma cavidade central em formato sextavado. Quando necessário, utilize uma chave tipo Allen apropriada para mudar a posição da válvula de serviço (sentido horário fecha, anti-horário abre).

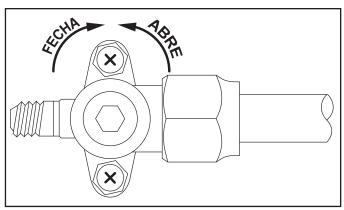


FIG. 23 - VÁLVULA DE SERVIÇO SEM A PORCA DE PROTECÃO

6.3.2 - Unidades Condensadoras 38CCU

As unidades condensadoras 38CCU036 e 38CCU060 possuem conexões de sucção do tipo tubo expandido soldado, enquanto a conexão de expansão é do tipo porca-flange.

Como operar as válvulas de serviço previstas na unidade condensadora

Válvula de serviço fechada (figura 24):

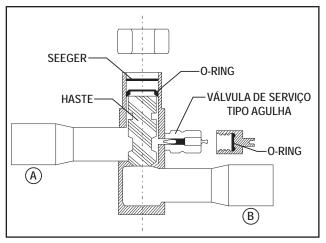


FIG. 24 - VÁLVULA DE SERVIÇO FECHADA

Com uma chave Allen, girar a haste (giro em sentido horário) para a direita até o fim, apertando-a firmemente ficaremos:

- Sem comunicação entre A, conexão do evaporador e B, conexão da parte interna da un. condensadora.
- Com comunicação permanente entre A e a válvula de serviço externo tipo agulha.
- Ter em conta que ao comprimir a agulha central da válvula de serviço se produz a comunicação para o interior do sistema.
 Para operar com esta, pode-se utilizar uma válvula especial com depressor ou mangueira de serviço com depressor.

Válvula de serviço aberta (figura 25):

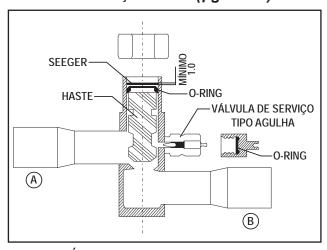


FIG. 25 - VÁLVULA DE SERVIÇO ABERTA

Posicionar a haste até em cima (até ter como mínimo I milimetro mais baixo que o anel seeger) girando-a com uma chave Allen para a esquerda (sentido anti-horário).

É muito importante respeitar a medida de I mm (como mínimo) de fresta entre a haste e o anel seeger, pois se esta for forçada o anel seeger será rompido, trazendo consequente perigo para o operador, pela expulsão da haste, com a consequente perda da carga e vácuo realizado anteriormente.

Para fazer a conexão das tubulações de refrigerante nas respectivas válvulas de serviço proceda da seguinte maneira:

 a) Quando necessário, soldar as tubulações que unem as unidades condensadora e evaporadora, com solda Phoscoper e fluxo de solda, para evitar o óxido de cobre. Faça passar Nitrogênio no momento da solda.

(I) IMPORTANTE

Quando da interligação das conexões tipo tubo expandido soldado é importante que, durante o procedimento de soldagem, o corpo da válvula seja resfriado, para evitar que as vedações internas sejam danificadas.

- Encaixe as porcas que estão pré-montadas nas conexões das unidades evaporadora e condensadora nas extremidades dos tubos de sucção e expansão.
- Após o item "b", faça os flanges nas extremidades dos tubos. Utilize flangeador de diâmetro adequado.
- d) Conecte as duas porcas-flange às respectivas válvulas de serviço.

(I) IMPORTANTE

Uma vez terminadas as operações de serviço, deve-se colocar as tampas das válvulas de serviço e ajustá-las para que produzam um lacre hermético. Verificar com detector de vazamento se estão corretamente seladas.

(I) IMPORTANTE

Evite afrouxar as conexões após tê-las apertado, desta maneira irá prevenir perdas de refrigerante.

6.4 - Procedimento para Flangeamento e Conexão das Tubulações de Interligação

A sequência de itens a seguir apresenta um passo-a-passo para a execução correta do procedimento de flangeamento e também da conexão dos tubos de interligação entre as unidades evaporadora e condensadora.

6.4.1 Pré-instalação

 Cortar o tubo de interligação no tamanho apropriado com um cortador de tubos.

FIG. 26 - CORTADOR DETUBOS

É recomendado cortar aproximadamente 30 mm ou 40 mm a mais que o tamanho estimado.

(I) IMPORTANTE

Remover as rebarbas das pontas do tubo de interligação através de uma ferramenta apropriada (tipo rosqueira), tendo em conta que uma rebarba no circuito de refrigeração pode causar sérios danos ao compressor. Este procedimento é muito importante e deve ser feito com muito cuidado.

FIG. 27 - FERRAMENTA PARA REBARBAR

III NOTA

Quando estiver retirando a rebarba, assegurese que o extremo do tubo esteja voltado para baixo, para evitar que alguma partícula caia no interior do tubo.

6.4.2 Conexões da unidade condensadora:

O procedimento a seguir descreve a fixação das tubulações de interligação nas conexões da unidade condensadora.

- Remover a porca da conexão da unidade e ter certeza de colocá-la no tubo de interligação.
- Fazer o flangeamento no extremo do tubo de interligação com um flangeador. Veja o procedimento conforme as fotos a seguir.

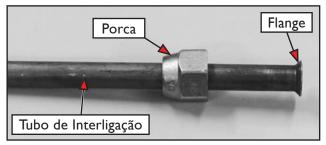


FIG. 28 - TUBO COM PORCA

(I) IMPORTANTE

Certifique-se que o flange cobrirá toda área em ângulo do niple, encostando o flange neste. Veja o detalhe desta conexão na foto abaixo.

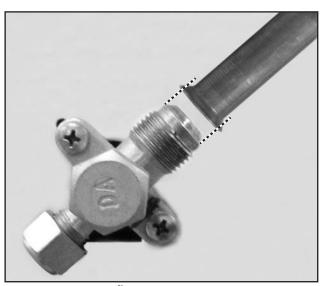


FIG. 29 - CONEXÃO NIPLE TUBO

I NOTA

Colocar um tampão ou selar o tubo flangeado com uma fita adesiva para evitar que pó ou partículas sólidas possam vir a entrar no tubo antes deste ser usado.

MHXIFLEX

 Tenha certeza de colocar óleo de refrigeração nas superfícies em contato entre o extremo flangeado e a união, antes de conectados entre si. Isto é feito para evitar perdas de refrigerante.

(I) IMPORTANTE

Para sistemas com refrigerante HFC-410A NÃO se deve utilizar óleo mineral, utilize somente óleo polioléster.

 Para obter-se uma boa união, manter firmemente unidos entre si o tubo de interligação, com o flange, e a conexão da unidade (observando a respectiva linha - expansão ou sucção), enquanto se faz um leve rosqueamento manual da porca.

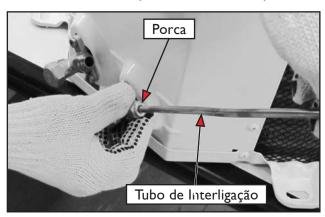


FIG. 30 - APERTO MANUAL DA PORCA

 Logo em seguida apertar firmemente de maneira a garantir que haja uma perfeita vedação entre a porca e o flange.

FIG. 31 - FIXAÇÃO DA PORCA

III NOTA

Utilize sempre duas chaves para fazer o aperto final (conforme tabela de torques), para evitar danos por torção das válvulas da unidade.

O procedimento e os cuidados para a tubulação da linha de sucção são exatamente os mesmos utilizados para a interligação da linha de expansão.

FIG. 32 - CONEXÃO DA LINHA DE EXPANSÃO DA UNIDADE CONDENSADORA

6.4.3 Conexões da unidade evaporadora:

O procedimento para fixação das tubulações de interligação nas conexões da evaporadora é similar ao efetuado nas conexões da condensadora.

- Remover a porca do tubo da evaporadora e ter certeza de colocá-la no tubo de interligação.
- Para obter-se uma boa união, manter firmemente unidos entre si o tubo de interligação e o tubo da unidade evaporadora (observando a respectiva linha - expansão ou sucção), enquanto se faz um leve rosqueamento manual da porca.

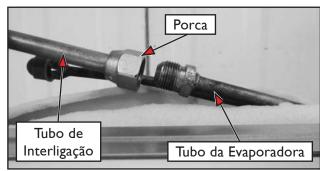


FIG. 33 - CONEXÃO DA LINHA DE SUCÇÃO

 Logo em seguida apertar firmemente de maneira a garantir que haja uma perfeita vedação entre a porca e o flange.

NOTA

Utilize sempre duas chaves para fazer o aperto final (conforme tabela de torques), para evitar danos por torção nas tubulações da unidade.

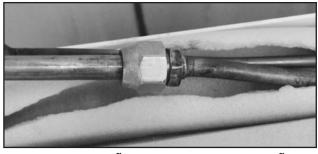


FIG. 34 - CONEXÃO DA LINHA DE SUCÇÃO DA UNIDADE EVAPORADORA


6.5 - Procedimento de Brasagem

Os procedimentos de brasagem estão adequados para a tubulação sendo que durante esta deverá ser utilizado Nitrogênio, a fim de evitar entrada de cavacos e a formação de óxido nas tubulações de interligação.

NOTA

Devem ser respeitados os limites de comprimento equivalente e desnível indicados para as unidades.

 Ao dobrar os tubos o raio de dobra não seja inferior 100 mm.

6.6 - Suspensão e Fixação das Tubulações de Interligação

Procure sempre fixar de maneira conveniente as tubulações de interligação através de suportes ou pórticos, preferencialmente ambas conjuntamente.

Isole-as utilizando borracha de neoprene circular e após passe fita de acabamento em torno (figura 35).

U IMPORTANTE

Como o sistema de expansão está localizado na unidade condensadora, é necessário fazerse o isolamento da linha de expansão que interliga a unidade evaporadora à unidade condensadora.

Teste todas as conexões soldadas e flangeadas quanto a vazamentos.

Pressão máxima de teste:

3792 kPa (550 psig) para refrigerante R-410A

Utilize regulador de pressão no cilindro de Nitrogênio. Se for conveniente passe a interligação elétrica junto à tubulação de interligação, conforme figura 35.

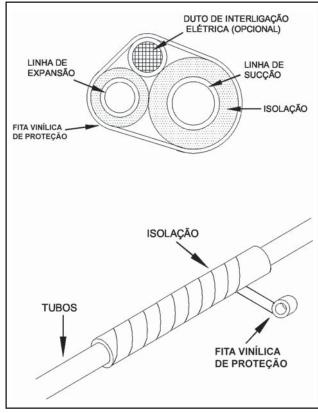


FIG. 35 - TUBULAÇÃO DE INTERLIGAÇÃO

6.7 - Procedimento de Vácuo das Tubulações de Interligação

ATENÇÃO

As unidades condensadoras 38C trabalham com refrigerante HFC-410A, que exige maiores cuidados com o compressor, tenha especial atenção ao procedimento de vácuo de maneira que seja sempre executado corretamente.

Rosca ventil Manifold: Para R-410A: 12,70 mm (1/2 in)

MHXIFLEX

Todo o sistema que tenha sido exposto à atmosfera deve ser convenientemente desidratado. Isto é conseguido se realizarmos adequado procedimento de vácuo, com os recursos e procedimentos descritos a seguir.

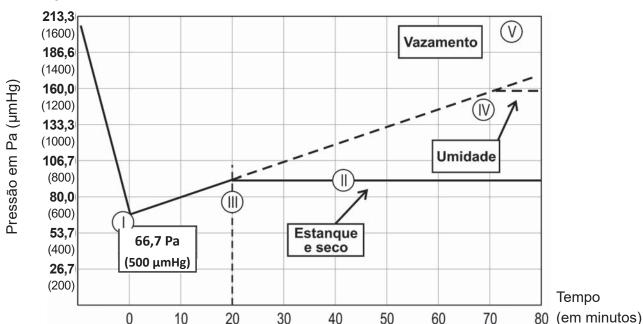
 Como as tubulações de interligação são feitas no campo, deve-se fazer o procedimento de vácuo das tubulações e da evaporadora.
 O ponto de acesso é a válvula de serviço (sucção) junto a unidade condensadora.

(I) IMPORTANTE

Durante o procedimento de vácuo as válvulas de serviço deverão permanecer fechadas, pois as unidades condensadoras saem da fábrica com carga.

- As válvulas saem fechadas de fábrica para reter o refrigerante na condensadora.
 Para fazer o procedimento de vácuo, mantenha a válvula na posição fechada e interligue o sistema à bomba de vácuo conforme a figura 36a.
- Utilize vacuômetro para medição do vácuo.
 A faixa a ser atingida deve-se situar entre 33,3 Pa e 66,7 Pa (250 µmHg e 500 µmHg).

 Monte um circuito como mostrado na figura 36a. Feito isto, pode-se realizar o procedimento de vácuo no sistema.


I NOTA

- Sempre que possível NÃO utilize válvula manifold, nem mangueiras para efetuar o procedimento de vácuo.
- Faça as trocas de óleo da bomba de vácuo, conforme indicação do fabricante da mesma.
- Faça a quebra de vácuo com Nitrogênio, quando necessário

A PERIGO

- NUNCA utilize o próprio compressor para efetuar o procedimento de vácuo.
- Para um funcionamento seguro e eficiente do produto é imprescindível garantir o processo de vácuo e evitar a entrada de ar durante o procedimento de carga de fluido refrigerante.
- A não observância das recomendações acima pode causar dano potencial ao produto, à instalação e à integridade física de pessoas que estejam nas proximidades durante o procedimento.

Gráfico para Análise da Eficácia do Procedimento de Vácuo

Gráfico Pressão x Tempo do processo de vácuo

- I Faixa de vácuo recomendada de 33,3 Pa a 66,7 Pa (250 μmHg a 500 μmHg).
- II Pressão estabilizada (em torno de 93,3 Pa (700 μmHg)), indica que a condição ideal foi atingida, ou seja, sistema seco e com estanqueidade (sem fugas).
- III Tempo mínimo para estabilização: 20 minutos.
- IV Se a pressão estabilizar-se apenas nessa faixa, indica que há umidade no sistema. Deve-se então quebrar o vácuo com a circulação de nitrogênio e após reiniciar o processo de vácuo.
- V Se a pressão não se estabilizar e continuar aumentando, indica vazamento (fugas no sistema).

6.8 - Adição de Carga de Refrigerante

As unidades condensadoras 38C_036 e 38C_060 trazem de fábrica apenas uma carga de gás refrigerante (C2) de 0,5 kg na condensadora.

Veja a seguir o procedimento e exemplos de como calcular a quantidade de gás refrigerante a ser adicionada conforme o modelo de unidade condensadora.

Procedimento para calcular a quantidade de gás refrigerante a ser adicionada:

Conceitos:

- (C1) Carga necessária para uma instalação com até 7,5 m de comprimento linear;
- (C2) Carga que a condensadora sai de fábrica;
- (C3) Carga que se necessita adicionar para uma instalação de até 7,5 m de comprimento linear;
- (C4) Carga que se necessita adicionar por metro de comprimento excedente (CEXC).

	Unidade Condensadora	C1 (g)	C2 (g)	C3 (g)	C4 (g/m)
1	38CCU036515MX	2350	500	1850	30
2	38CCU060235MX	2825	500	2325	50
3	38CCU060535MX	2825	500	2325	50

ATENÇÃO

Os valores apresentados na tabela acima, bem como os exemplos de cálculo da carga de refrigerante a seguir, são meramente ilustrativos. Os valores apresentados poderão variar sem aviso prévio.

A PERIGO

- NÃO REALIZE o recolhimento do fluido refrigerante utilizando o compressor da unidade condensadora. Para o recolhimento de fluido refrigerante deve-se utilizar a bomba recolhedora e cilindro apropriados.
- Jamais coloque em funcionamento a unidade sem certificar-se de que as válvulas de serviço estejam abertas.
- A não observância das recomendações acima pode causar dano potencial ao produto, à instalação e à integridade física de pessoas que estejam nas proximidades durante o procedimento.

Exemplos de Cálculo da Carga de Refrigerante:

1. Carga de refrigerante para Comprimento Linear **até 7,5 m**:

Para instalação das evaporadoras modelo 42XQ cuja tubulação de interligação possui comprimento linear C.L (ver subitem 6.1) até 7,5 m, deverá ser adicionada carga de refrigerante de acordo com a condensadora utilizada e o tipo de refrigerante, conforme apresentado na coluna C3 da tabela anterior.

Exemplo 1: Unidade Condensadora: 38CC 060 - linha 2 da tabela

C.L: 6 metros (menor que 7,5 m)

Carga Adicional (Coluna C3): 2325 gramas

MHXIFLEX

2. Carga de refrigerante para Comprimento Linear **superior à 7,5 m**:

Comprimento Excedente (CEXC) é o comprimento linear (C.L) acima de 7,5m; o qual deve ser calculado através da seguinte fórmula:

$C_{EXC} = C.L - 7.5 m$

A carga a ser adicionada deverá ser obtida através da seguinte fórmula:

Carga adicional = $C3 + (C_{EXC} \times C4)$

Exemplo 2:

Unidade Condensadora:

38CC 060 - linha 2 da tabela

C.L: 10,5 metros (maior que 7,5 m)

 $C_{EXC} = 10.5 - 7.5$: $C_{EXC} = 3 \text{ m}$

Carga Adicional (Coluna C3): 2325 g

Carga que se necessita adicionar por metro de CEXC (Coluna C4): 50 g/m

Carga adicional = $2325 + (3 \times 50)$:

Carga adicional = 2475 g

3. Carga de refrigerante em casos de manutenção:

Em casos de manutenção onde haja necessidade de se realizar uma carga completa, calcule a carga através da seguinte fórmula:

Carga completa = $C1 + (C_{EXC} \times C4)$

Exemplo 3:

Unidade Condensadora:

38CC_060 - linha 2 da tabela

C.L: 10,5 metros (maior que 7,5 m)

 $C_{EXC} = 10.5 - 7.5$: $C_{EXC} = 3 \text{ m}$

Carga necessária para uma instalação com até 7,5 m (Coluna C1): 2825 g

acc 7,5 iii (Colulia C1). 2025 g

Carga que se necessita adicionar por metro

de CEXC (Coluna C4): 50 g/m

Carga adicional = $2825 + (3 \times 50)$:

Carga adicional = 2975 g

ATENÇÃO

Antes de colocar o equipamento em operação, após o complemento da carga de refrigerante (se necessário), abra as válvulas de serviço junto a unidade condensadora.

Para realizar a adição da carga de refrigerante veja o procedimento a seguir.

Procedimento para Execução da Carga de Refrigerante:

- a) Após concluído e aprovado o procedimento de vácuo (subitem 6.7), remova a bomba de vácuo, o vacuômetro e o cilindro de Nitrogênio, representados no diagrama da figura 36a.
- b) Para fazer a carga de refrigerante, monte os componentes representados na figura 36b: cilindro de carga, manifold (ver Nota abaixo) e balança.

NOTA

A figura 36b mostra o manifold conectado à válvula de serviço de sucção (3), porém nas condensadoras que possuem conexão ventil Schrader na válvula de serviço na linha de líquido/expansão (4), esta deverá ser utilizada neste procedimento de carga. Em caso de sistemas com HFC-410A utilize um manifold específico para uso com este refrigerante.

- c) Purgue as mangueiras utilizadas para interligar o cilindro à válvula de serviço.
- d) Abra a válvula do cilindro de carga (1), após abra o registro do manifold (2).
- e) O refrigerante deve sair do cilindro na forma líquida e a carga deve ser controlada até atingir a quantidade ideal (ver tabela neste item). O refrigerante deve entrar no sistema aos poucos (evitar a chegada de líquido ao compressor).

NOTA

Quando o sistema utiliza pistão (accurator), a válvula de serviço está posicionada na linha de líquido, portanto no procedimento de carga, o sistema deverá estar parado, pois em funcionamento a pressão do sistema é maior que a do cilindro.

f) Uma vez completada a carga, feche o registro de sucção do manifold (2), desconecte a mangueira do sistema e feche a válvula do cilindro de carga (1).

ATENÇÃO

Em caso de recarga integral, o sistema não deve ser deixado exposto ao ar atmosférico (destampado) por mais de 5 minutos.

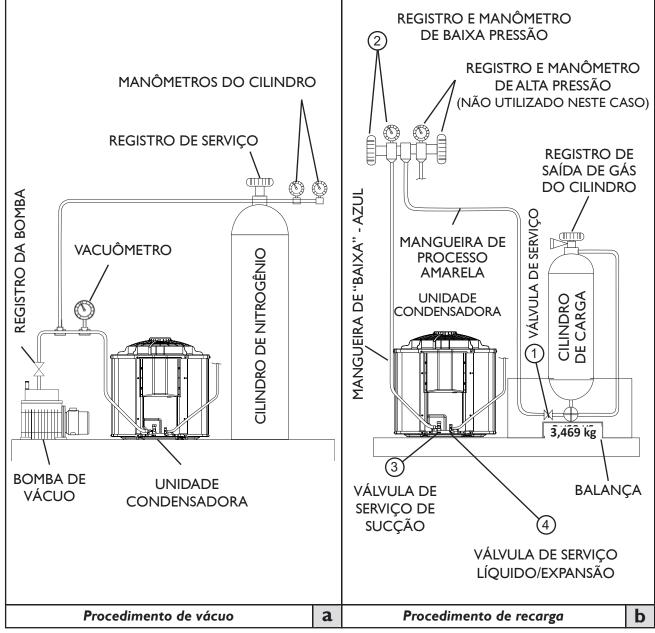


FIG. 36

6.9 - Refrigerante HFC-410A

Este condicionador de ar utiliza o novo refrigerante HFC-410A que não destrói a camada de ozônio.

6.9.1 Características do refrigerante

As características do refrigerante HFC-410A são: fácil absorção de água, membranas oxidantes ou óleo, a pressão do HFC-410A é de aproximadamente 1,6 vezes mais elevada do que a do refrigerante R-22. Juntamente com o novo refrigerante, o óleo de refrigeração também foi alterado, que a partir de agora passa a ser Poliolester.

Certifique-se de que água ou outros contaminantes não se misturem no sistema de refrigeração para o novo refrigerante durante a instalação ou serviços de reparo.

6.9.2 Cuidados na instalação/serviços

- Não misture outros refrigerantes ou outros óleos com o HFC-410A.
- Para evitar cargas de refrigerante incorretas, os tipos de ferramentas e conexões de serviços foram trocadas, logo são diferentes dos refrigerantes convencionais.
- As pressões operacionais com HFC-410A são elevadas, portanto sempre utilize tubos com espessuras corretas especificados para uso com HFC-410A
 veja a nota de "Atenção" no sub-item 6.1 neste manual.
- Durante a instalação, certifique-se de que as tubulações estejam limpas, livres de água, óleo, pó ou sujeira.
- Certifique que ao soldar, gás nitrogênio passe através da tubulação.
- Utilize bomba de vácuo apropriada, com prevenção de contra fluxo, para evitar que o óleo da bomba não retorne à tubulação enquanto a bomba pare.
- O refrigerante HFC-410A é uma mistura azeotrópica. Utilize a fase líquida para carregar o sistema. Se gás for utilizado, a composição do refrigerante poderá mudar e afetará o desempenho do condicionador de ar.

6.10 - Adição de Óleo

Não há necessidade de adição de óleo desde que respeitados os limites de aplicação e operação do equipamento.

7 - Sistema de Expansão

O sistema de expansão das unidades 38C_036 e 38C_060 é realizado na unidade condensadora através de um sistema denominado "pistão" (accurator) - Ver figuras abaixo.

NOTA

O kit sistema de expansão acompanha as unidades evaporadoras nas capacidades 036 e 060, e deve ser posicionado na unidade condensadora conforme figura ao lado. A posição de instalação do pistão (accurator), a partir da válvula de serviço, não deve exceder a 500 mm. Unidades somente frio (FR) utilizam somente um pistão; veja a referência do pistão no item 15 - Características Técnicas Gerais.

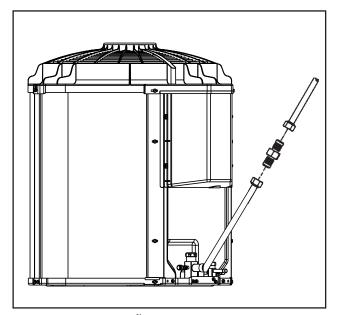


FIG. 37 - INSTALAÇÃO DO KIT SISTEMA DE EXPANSÃO

Este sistema, conforme figura abaixo, é formado por pistões com orifícios calibrados fixos de fácil remoção no interior de um corpo. O accurator é conectado através de porca flange 9,52 mm (3/8 in) na tubulação.

As propriedades de aplicação do pistão incidem desde o conteúdo mais preciso do fluxo de massa de gás refrigerante para o interior do evaporador comparado, por exemplo, ao sistema de tubo capilar. Além disto os pistões são de fácil manutenção.

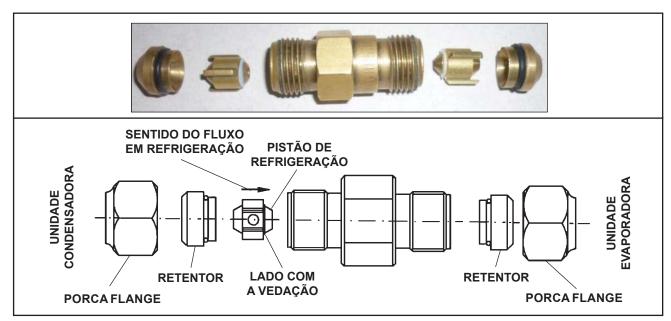


FIG. 38

8 - Instalação, Interligações e Diagramas Elétricos

(IMPORTANTE

As ligações internas (entre as unidades) e externas (fonte de alimentação e unidade) deverão obedecer a norma brasileira NBR5410 - Instalações Elétricas de Baixa Tensão.

8.1 - Instruções Gerais para Instalação Elétrica

A alimentação elétrica do sistema deve ser feita através de um circuito elétrico independente e as unidades deverão ser protegidas através de um disjuntor de fácil acesso após a instalação.

Os dados elétricos para dimensionamento e instalação do sistema estão disponíveis nas tabelas de Características Técnicas Gerais - ver capítulo 15.

ATENÇÃO

- Verificar que a capacidade de alimentação seja suficiente para a conexão dos cabos. Para evitar descargas elétricas, instalar um disjuntor de curto-circuito no lugar onde é previsto para instalar as unidades.
- A tensão de alimentação deve estar entre 90% 110% da tensão nominal.
- A alimentação elétrica e o aterramento deverão ser feitos através da unidade condensadora.

(I) IMPORTANTE

A ligação elétrica equivocada pode causar mau funcionamento da unidade e choque elétrico. Consulte os códigos e normas locais para instalações elétricas adequadas ou limitações.

🎤 CUIDADO

Mantenha a energia desligada enquanto estiver efetuando os procedimentos de interligação. Quando for efetuar qualquer manutenção no sistema observe SEMPRE que a energia esteja DESLIGADA.

8.2 - Quadro Elétrico

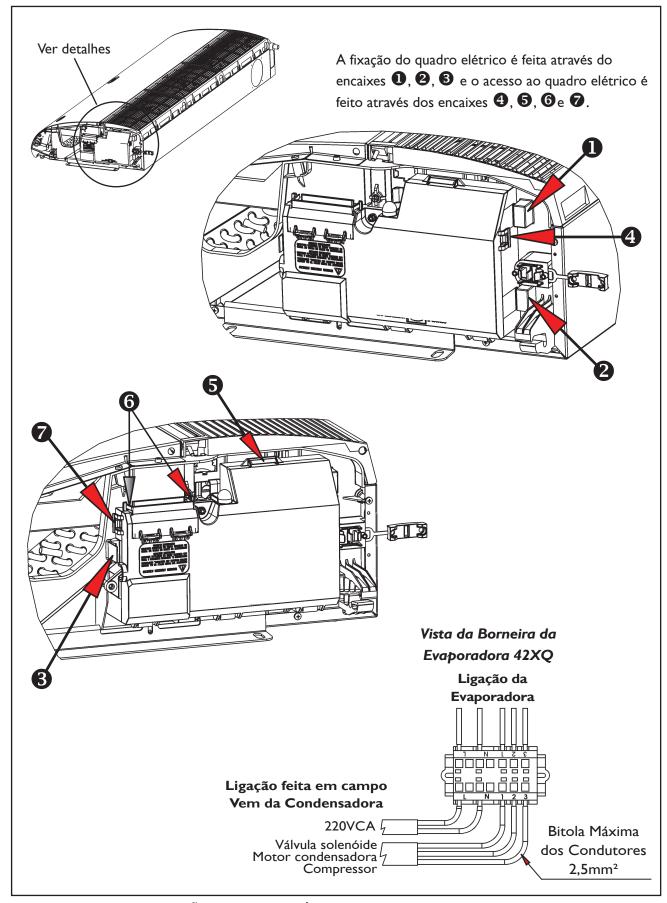
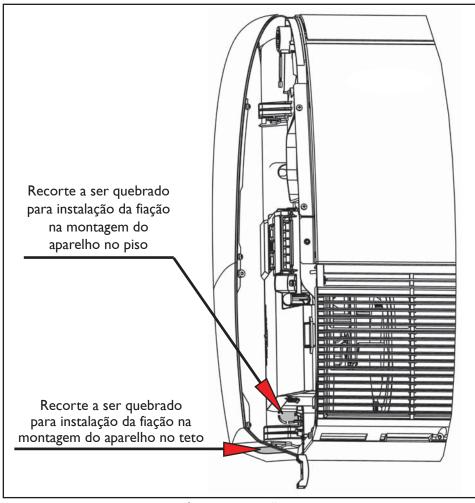



FIG. 40 - ENCAIXES E FIXAÇÃO DA CAIXA ELÉTRICA DA EVAPORADORA E BORNEIRA

8.2.1 Fiação elétrica

Conforme sua instalação no piso (console) ou no teto (under ceiling), existem diferentes posições por onde deve passar a fiação elétrica da evaporadora.

A figura ao lado mostra as posições

A figura ao lado mostra as posições onde se deve quebrar o recorte existente na tampa lateral esquerda da evaporadora para passagem da fiação.

FIG. 41 - RECORTES PARA SAÍDA DA FIAÇÃO

8.2.2 Conexão de campo do cabo terra

A conexão do cabo terra em campo deverá ser feita conforme a disposição mostrada na figura abaixo.

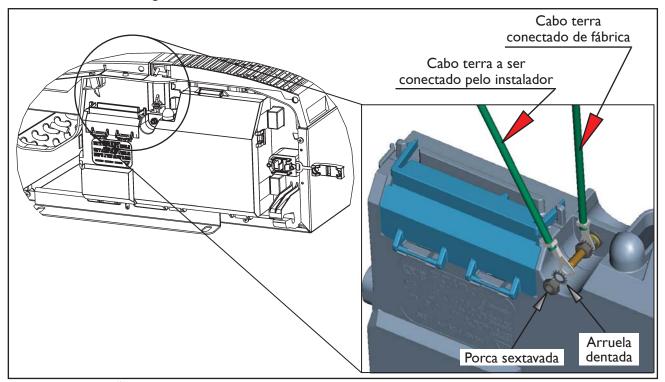
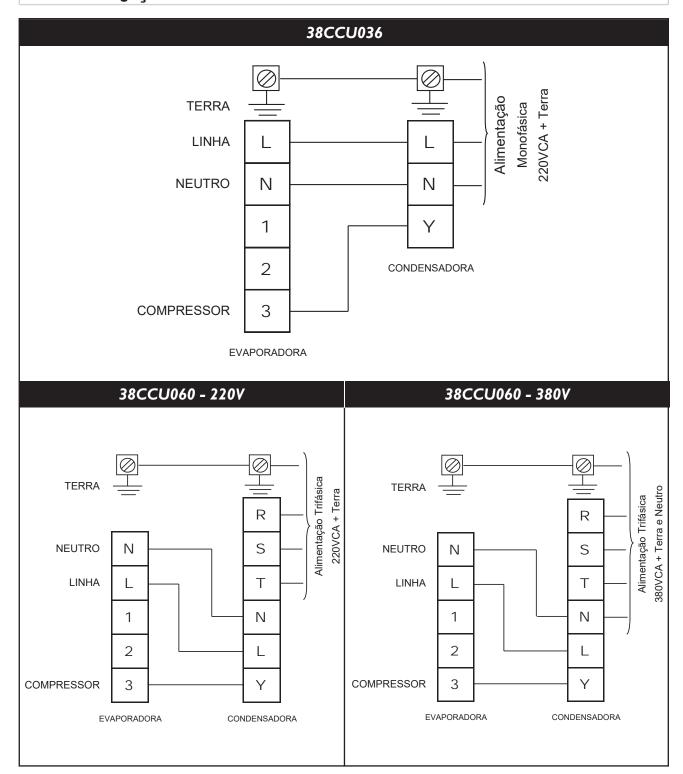
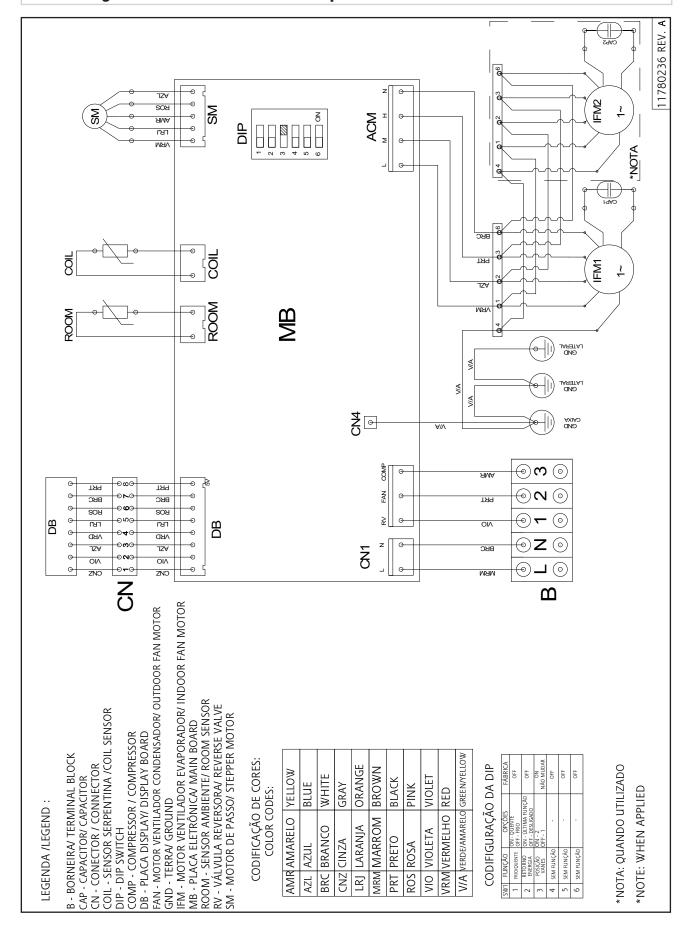
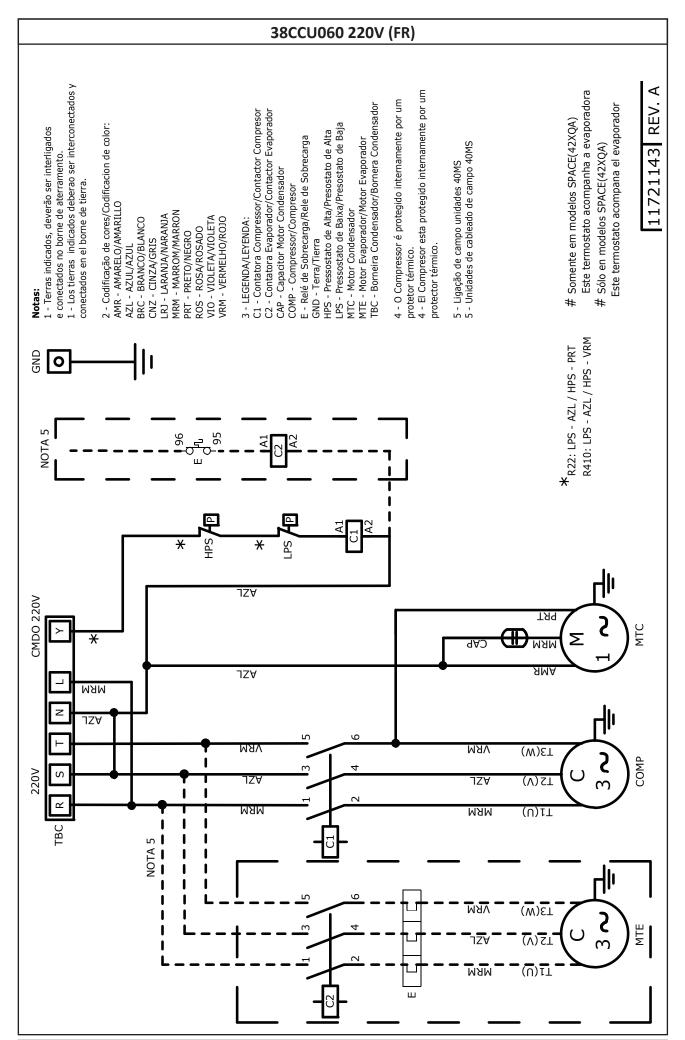



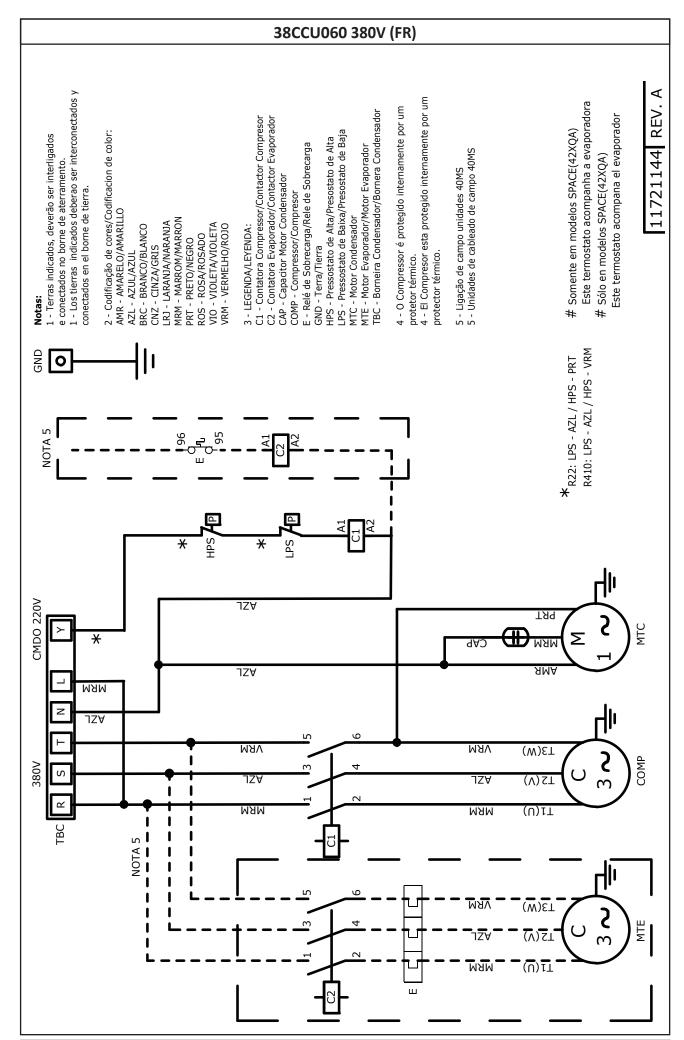
FIG. 42 - CONEXÃO CABO TERRA



8.3 - Interligações Elétricas

8.4 - Diagrama Elétrico Unidades Evaporadoras




8.5 - Diagramas Elétricos Unidades Condensadoras

38CCU036 (FR) 11721139 REV. e conectados no borne de aterramento. 1 - Los tierras indicados deberao ser interconectados γ 4 - El Compresor esta protegido internamente por um 4 - O Compressor é protegido internamente por um IBC - Borneira Condensador/Bornera Condensador CAP1 - Capacitor Compressor/Capacitor Compresor C - Contatora Compressor/Contactor Compresor LPS - Pressostato de Baixa/Presostato de Baja 2 - Codificação de cores/Codificacion de color: AMR - AMARELO/AMARILLO 1 - Terras indicados, deverão ser interligados HPS - Pressostato de Alta/Presostato de Alta CAP2 - Capacitor Motor Condensador COMP - Compressor/Compresor conectados en el borne de tierra. MTC - Motor Condensador MRM - MARROM/MARRON LRJ - LARANJA/NARANJA ROS - ROSA/ROSADO VIO - VIOLETA/VIOLETA 3 - LEGENDA/LEYENDA: BRC - BRANCO/BLANCO VRM - VERMELHO/ROJO PRT - PRETO/NEGRO GND - Terra/Tierra CNZ - CINZA/GRIS protector térmico. protetor térmico. R410: LPS - AZL / HPS - VRM R22: LPS - AZL / HPS - PRT * Quando aplicado Cuando aplicado O HPS LPS JZY ТЯЧ ТЯЧ MTC Σ MRM **CMDO 220V** ٦Z∀ ЯМА X 220V MRM MRM MKM Э COMP z ΝВМ S ٦Z∀ JZA TBC ٦Z∀ Я

9 - Configurações do Sistema

As unidades evaporadoras possuem na placa eletrônica um conjunto de microchaves (DIPs) que saem de fábrica com algumas configurações preestabelecidas, mas que poderão ser alteradas conforme a opção do usuário. A configuração do sistema deve ser efetuada somente por um instalador qualificado.

(I) IMPORTANTE

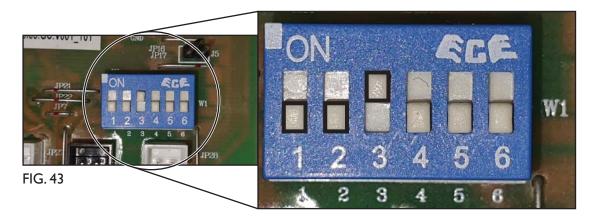
A microchave SW1-3 da placa eletrônica sai de fábrica na posição ON (ver figura 52). e deverá ser mantida nesta posição para que os defletores de ar operem corretamente.

9.1 - Seleção de Configuração - Somente Frio ou Quente-Frio (Não disponível)

NOTA

As unidades evaporadoras 42XQW estão disponíveis para operar no modo somente frio.

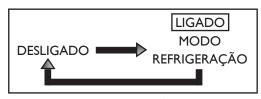
A microchave SW1-1 já sai de fábrica na posição OFF (ver figura 52) e deverá ser mantida nesta posição.


9.2 - Seleção de Configuração - Retorno Após Falha de Energia

A placa eletrônica pode ser selecionada para operar em retornar desligado (OFF) ou retornar ligado (ON) através da microchave SW1-2.

NOTA

As unidades evaporadoras saem de fábrica configuradas para retornar em desligado (microchave SW1-2 em OFF). Ver figura abaixo.


Se a microchave é colocada na posição ON, a placa eletrônica retornará a operar com a última seleção antes da falha de energia elétrica. Se a microchave é mantida na posição OFF, a placa eletrônica irá retornar em desligado.

9.3 - Operação de Emergência

A unidade interna possui um botão de emergência posicionado internamente no display da evaporadora, para ter acesso a este utilize um objeto pequeno e pontiagudo, tal como a ponta de uma lapiseira. Este botão poderá ser utilizado para ligar/desligar o aparelho e também para modificar o modo de operação na seguinte sequência:

versão somente refrigeração

Quando em modo Refrigeração
 A unidade irá operar com o ajuste padrão: 24°C e Ventilação no modo automático.

Se o botão de emergência for usado, as funções Timer e Sleep, que foram previamente estabelecidas, serão canceladas.

9.4 - Autodiagnóstico e Códigos de Falha - Unidades Internas

O Display da unidade interna possui os seguintes itens:

- 1. Botão interno para operação de emergência
- LED Verde indicador de funcionamento (Power)
- 3. LED Vermelho indicador do temporizador (Timer)
- 4. LED Amarelo indicador do degelo (Defrost)
- 5. Receptor de sinais infravermelhos

Unidade Evaporadora LEDs		radora		Decerie a / Detalles	
			Onorocão		
Power	Power Timer Defrost		Operação	Descrição / Detalhes	
Verde	Vermelho	Amarelo			
Apagado	Apagado	Apagado	Modo espera (stand-by)		
Aceso	Apagado	Apagado	Operação Normal		
Aceso	Apagado	Apagado	Modo Ventilação		
Apagado	Aceso	Apagado	Temporizador (timer) atuando	Veja o item "Funcionamento do	
Apagauo	ACESU	Apagauo	Temponzador (timer) atdando	temporizador (TIMER)".	
Anagada	Anagado	Aceso	Sistema em degelo atuando	Veja o item "Visor da Unidade	
Apagado	Apagado	Aceso	Sisterna em degelo atuando	Interna".	
Acoso	Anagado	Anagado	Made dermir (Sleen) atuando	Veja o item "Funcionamento da	
Aceso	Apagado	Ahagauo	Modo dormir (Sleep) atuando	função DORMIR".	

10 - Partida Inicial

A tabela abaixo define condições limite de aplicação e operação das unidades.

TABELA DE CONDIÇÕES E LIMITES DE APLICAÇÃO E OPERAÇÃO

Situação	Valor Máximo Admissível	Procedimento	
Temperatura do ar externo (unidades com condensação a ar)	50°C (R-410A)	Para temperaturas superiores, consulte um credenciado Midea Carrier.	
2) Voltagem	Variação de ± 10% em relação ao valor nominal	Verifique sua instalação e/ou contate a companhia local de energia elétrica.	
3) Desbalanceamento de rede (Modelos 060)	Voltagem: 2% Corrente: 10%	Verifique sua instalação e/ou contate a companhia local de energia elétrica.	
4) Distância e desnível entre as unidades	Ver Subitens 6.1 e 6.2	Para distâncias maiores, consulte um credenciado Midea Carrier.	

Antes de partir a unidade, observe as condições acima e os seguintes itens:

- Verifique a adequada fixação de todas as conexões elétricas;
- Confirme que não há vazamentos de refrigerante;
- Confirme que o suprimento de força é compatível com as características elétricas da unidade:
- Assegure-se que os compressores podem se movimentar livremente sobre os isoladores de vibração da unidade condensadora;
- Assegure-se que todas as válvulas de serviço estão na correta posição de operação (abertas);
- Assegure-se que a área em torno da unidade externa (condensadora) está livre de qualquer obstrução na entrada ou saída do ar;
- Confirme que ocorre uma perfeita drenagem e que não haja entupimento na mangueira do dreno.

ATENÇÃO

Os motores dos ventiladores das unidades são lubrificados na fábrica. Não lubrificar quando instalar as unidades. Antes de dar a partida ao motor, certifique-se de que a hélice ou turbina do ventilador não esteja solta.

ATENÇÃO

Nas unidades condensadoras montadas exclusivamente com compressores do tipo Scroll deve-se observar o ruído do mesmo após o start-up. Se o mesmo for alto e as pressões forem as mesmas após a partida, inverta duas fases de alimentação! Este procedimento é obrigatório e a não observância implica em perda de garantia do equipamento.

11 - Manutenção

11.1 - Generalidades

ATENÇÃO

Antes de executar quaisquer serviços de manutenção, desligue a tensão elétrica que alimenta o aparelho.

Para evitar serviços de reparação desnecessários, confira cuidadosamente os seguintes pontos:

- O aparelho deve estar corretamente ligado à rede principal, com todos os dispositivos manuais, e/ou automáticos de manobra/proteção do circuito adequadamente ligados, sem interrupções tais como: fusíveis queimados, chaves abertas, etc.
- Mantenha o gabinete e as grelhas bem como a área ao redor da unidade a mais limpa possível.
- Periodicamente limpe as serpentinas com uma escova macia. Se as aletas estiverem muito sujas, utilize, no sentido inverso do fluxo de ar, jato de ar comprimido ou de água a baixa pressão. Tome cuidado para não danificar as aletas.
- Verifique o aperto de conexões, flanges e demais fixações, evitando o aparecimento de vibrações, vazamentos e ruídos.
- Assegure que os isolamentos das peças metálicas e tubulações estão no local correto e em boas condições.

11.2 - Manutenção Preventiva

Limpeza

Limpe o condensador com uma escova de pêlos macia, se necessário utilize também um aspirador de pó para remover a sujeira. Após esta operação utilize pente de aletas, no sentido vertical de cima para baixo, para desamassar as mesmas.

O acúmulo de poeira obstrui e reduz o fluxo de ar resultando em perda de capacidade. Limpe os gabinetes com uma flanela ou pano macio embebido em água morna e sabão neutro. NÃO UTILIZE solventes, tetracloreto de carbono, ceras contendo solvente ou álcool para limpar as partes plásticas.

Fiação

Cheque todos os cabos quanto a deterioração e todos os contatos (terminais) elétricos quanto ao aperto e corrosão.

Montagem

Certifique-se que as unidades estão firmemente instaladas.

Controles

Assegure-se que todos os controles estão funcionando corretamente e que a operação do aparelho é normal. Vibrações podem causar ruídos indesejáveis.

Dreno

Verifique entupimentos ou amassamento na mangueira do dreno. Isto pode ocasionar um transbordamento na bandeja e consequente vazamento de condensado.

11.3 - Manutenção Corretiva

Deve ser feita nas situações em que algum componente impeça o perfeito funcionamento de uma ou das duas unidades.

Nestas ocasiões é necessário consultar os esquemas elétricos fixos nas unidades.

11.4 - Limpeza Interna do Sistema

A queima de um motor elétrico é reconhecida pelo cheiro característico. Quando um motor de um compressor hermético queima, a isolação do enrolamento do estator forma carbono e lama ácida, neste caso, limpe o circuito do refrigerante antes de instalar um novo compressor. Instale um novo tubo capilar e filtro do condensador.

Danos a um novo compressor causados por falhas na limpeza do sistema não são cobertos pela garantia do produto.

11.5 - Detecção de Vazamentos

Quando houver suspeita de que exista um vazamento no circuito de refrigeração, deve-se proceder da seguinte forma:

Caso ainda haja pressão suficiente de refrigerante no sistema pode-se passar imediatamente a localização do vazamento por um dos processos indicados a seguir.

Se, entretanto, a pressão residual estiver muito baixa, deve-se conectar ao sistema um cilindro de Nitrogênio (utilize uma das válvulas de serviço existentes nas unidades).

A seguir pressurize o aparelho até 3792 kPa (550 psig) para refrigerante R-410A.

Dependendo do método a ser utilizado deve-se acrescentar também uma pequena quantidade de refrigerante ao sistema. Coloque o refrigerante antes do Nitrogênio.

11.5.1 - Métodos de Detecção

- Detector Eletrônico (refrigerante + Nitrogênio)

Pesquise o vazamento passando o sensor do aparelho próximo de conexões, soldas e outros possíveis pontos de vazamento. Utilize baixa velocidade no deslocamento do sensor.

O aparelho emite um sinal auditivo e/ou luminoso ao passar pelo ponto de vazamento.

- Detector Hálide-lamparina (refrigerante + Nitrogênio)

Procedimento similar ao anterior, mas neste caso o sensor é substituído por uma mangueira que se conecta a uma chama. Esta chama torna-se verde em presença de refrigerante halogenados (R-II, R-I2, R-22, etc ...).

Não inalar os gases resultantes de queima do refrigerante pois são altamente tóxicos.

- Solução de água e sabão

Prepare uma solução com sabão ou detergente e espalhe-o sobre as conexões, soldas e outros possíveis pontos de vazamento.

Aguarde pelo menos I minuto para verificar onde se formará a bolha.

Quando em ambientes externos o vento poderá dificultar a localização. Uma solução muito pobre em sabão também é inadequada, pois não formará bolhas.

- Método de Imersão

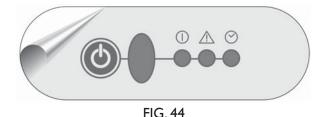
O método da imersão em tanque poderá ser utilizado para inspeção em componentes separados do aparelho (especialmente serpentinas).

Neste caso o componente deve ser pressurizado a 3792 kPa (550 psig) para refrigerante R-410A.

Não confundir bolhas de ar retiradas entre as aletas com vazamentos.

11.5.2 - Reparo do Vazamento

Após localizado o vazamento marque o local adequadamente e retire a pressão do sistema, eliminando o refrigerante e/ou Nitrogênio lá existentes.


Prepare para fazer a solda (utilize solda Phoscopper ou solda prata), executando-a com passagem de Nitrogênio no interior do tubo (durante a soldagem e a uma baixa pressão), evitando a formação de óxidos no interior do tubo.

Certifique-se que o reparo foi bem sucedido, pressurizando e testando novamente a unidade.

11.6 - Proteção do Display do Receptor da Unidade Evaporadora

As unidades evaporadoras saem de fábrica com uma película plástica para proteção do display do receptor de sinais, após finalizar a instalação da unidade esta película deverá ser retirada.

49

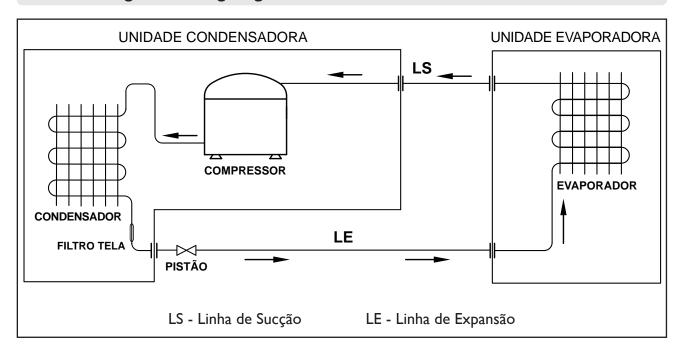
12 - Análise de Ocorrências

Tabela orientativa de possíveis ocorrências no equipamento condicionadores de ar, com sua possível causa e correção a ser tomada.

OCORRÊNCIA	POSSÍVEIS CAUSAS	SOLUÇÕES
Compressor	Capacidade térmica do aparelho é	Refazer o levantamento de carga térmica e orientar o
e motores	insuficiente para o ambiente.	cliente e, se necessário, troque por um modelo de
das unidades		maior capacidade.
condensadora e	Instalação incorreta ou deficiente.	Verificar o local da instalação observando altura, local,
evaporadora		raios solares no condensador, etc. Reinstalar o aparelho.
funcionam, mas	Vazamento de gás.	Localizar o vazamento, repará-lo e proceder a
o ambiente não		reoperação da unidade.
é refrigerado	Serpentinas obstruídas por sujeira.	Desobstruir o evaporador e condensador.
eficientemente.	Baixa voltagem de operação.	Voltagem fomecida abaixo da tensão mínima.
	Compressor sem compressão.	Substituir o compressor.
	Motor do ventilador com pouca	Verificar o capacitor de fase do motor do ventilador e o
	rotação.	motor do ventilador, substituindo-o se necessário.
	Pistão trancado.	Abrir o nipple e limpar o pistão, neste caso geralmente
		o evaporador fica bloqueado com gelo.
	Válv. serviço fechada ou	Abrir a(s) válvula(s).
	parcialmente fechada.	
Compressor	Interligação elétrica com mau	Colocar o cabo elétrico adequadamente na fonte
não arranca.	contato.	de alimentação.
	Baixa ou alta voltagem.	Poderá ser utilizado um estabilizador automático com
		potência em Watts condizente com o aparelho.
	Starter defeituoso.	Usar um capacímetro para detectar o defeito.
		Se necessário trocar o starter KAACS0201PTC.
	Caixa de comando elétrico.	Usar um ohmímetro voltímetro para detectar o defeito.
		Se necessário troque o comando.
	Compressor "trancado".	Proceder a ligação do compressor, conforme instruções
	·	no Guia de Diagnóstico de Falhas em Compressores,
		caso não funcione, substituir o mesmo.
	Circuito elétrico sobrecarregado	O equipamento deve ser ligado em tomada única e
	causando queda de tensão.	exclusiva.
	Excesso de gás.	Verificar, purgar se necessário.
	Ligações elétricas incorretas ou	Verificar a fiação, reparar ou substituir a mesma.
	fios rompidos.	Ver o esquema elétrico do aparelho.
Motores dos	Cabo elétrico desconectado ou	Colocar cabo elétrico adequadamente na fonte de
ventiladores	com mau contato.	alimentação.
não funcionam.	Motor do ventilador defeituoso.	Proceder a ligação direta do motor do ventilador, caso
		não funcione, substituir o mesmo.
	Capacitor defeituoso.	Usar um ohmímetro para detectar o defeito,
	·	se necessário, troque o capacitor.
	Ligações elétricas incorretas ou	Verificar a fiação, reparar ou substituir a mesma.
	fios rompidos.	Ver o esquema elétrico do aparelho.
	Hélice ou turbina solta ou travada.	Verificar, fixando-a corretamente.
Evaporador	Pistão trancado.	Reoperar a unidade, abrindo o nipple. Convém
bloqueado		executar a limpeza nos componentes com jatos de
		R-22 ou R-11 líquido.
05.01	Filtro sujo.	Limpe o filtro.
	Vazamento de gás.	Elimine o vazamento e troque todo o gás refrigerante.
	razamento de gas.	TEMPLIA O VALAMICINO E LI OQUE LOGO O SAS TEMBETAMLE.

OCORRÊNCIA	POSSÍVEIS CAUSAS	SOLUÇÕES
Ruído excessivo	Folga no eixo/mancais dos motores	Substituir o(s) motor(es) do(s) ventilador(es).
durante o	dos ventiladores.	
funcionamento.	Tubulação vibrando.	Verificar o local gerador do ruído e eliminá-lo.
	Peças soltas.	Verificar e calçar ou fixá-las corretamente.
	Mola de suspensão interna do	Substituir o compressor.
	compressor quebrada.	
	Hélice ou turbina desbalanceada/	Substituir a hélice ou a turbina.
	quebrada ou solta.	
	Instalação incorreta.	Melhorar a instalação, reforçar as peças que apresentam
		estrutura frágil.
Ruído de	Pouco gás no sistema.	Verifique as pressões do sistema e adicione gás
expansão de gás		se necessário.
na un. interna.		

13 - Planilha de Manutenção Preventiva


Itom	Descrição dos Serviços		Frequên	
Item			В	C
l°	Inspeção geral na instalação do equipamento, curto circuito de ar, distribuição de insuflamento nas unidades, bloqueamento na entrada e saída de ar do condensador, unidade condensadora exposta à carga térmica.			*
2°	Verificar instalação elétrica.	*		
3°	Lavar e secar o filtro de ar.	*		
4°	Medir tensão e corrente de funcionamento e comparar com a nominal.	*		
5°	Verificar aperto de todos os terminais elétricos das unidades, evitar possíveis maus contatos.	*		
6°	Verificar obstrução de sujeira e aletas amassadas.	*		
7°	Verificar possíveis entupimentos ou amassamentos na mangueira do dreno.	*		
8°	Fazer limpeza dos gabinetes.		*	
9°	Medir diferencial de temperatura.	*		
10°	Verificar folga do eixo dos motores elétricos.	*		
II°	Verificar posicionamento, fixação e balanceamento da hélice ou turbina.	*		
I2°	Verificar operação do sensor de temperatura.	*		
13°	Medir pressões de equilíbrio.		*	
I4°	Medir pressões de funcionamento.		*	

Códigos de frequência:

A = Mensalmente B = Trimestralmente C = Semestralmente

14 - Fluxograma Frigorígeno

15 - Características Técnicas Gerais

Unidade Evaporadora 42XQ_36 com Unidade Condensadora 38C_036

CÓDIGOS MAXIFLEX		42XQW36X5 38CCU036515MX		
CAPACIDADE NOMINAL REFRIGERAÇÃO - kW (BTU/h)		10,55 (36000)		
ALIMENTAÇÃO (V-Ph-Hz)		22	220-1-60	
CORRENTE	NOMINAL (A)		16,0	
CORRENTE	MÁXIMA (A)		21,8	
DOTÉNO!A	NOMINAL (W)	:	3480	
POTÊNCIA	MÁXIMA (W)		4722	
CABEAMENTO ELÉTRICO/DISJU	INTOR	Ver norn	na NBR 5410	
REFRIGERANTE		R	-410A	
SISTEMA DE EXPANSÃO	TIPO / TAMANHO	Pist	ão 0,064	
SISTEMA DE EXPANSAO	LOCAL	Cond	ensadora	
CARGA DE GÁS (g) (Até 7,5 m)		2350		
MASSA DO PRODUTO (PESO) SEM EMBALAGEM (kg)		30,7	49,0	
DIMENSÕES LxAxP (mm)		1195x233x628	623x759x623	
DISTÂNCIA EQUIVALENTE ENTF	RE UNIDADES (m)	30		
DESNÍVEL ENTRE UNIDADES (m	1)	10		
DIÂMETRO DO DRENO - mm (in)		19,05 (3/4)		
COMPRESSOR TIPO		Twin-rotary		
VENTU ADOD	TIPO / QUANTIDADE	Siroco / 3	Axial / 1	
VENTILADOR	VAZÃO (m³/h)	1360	4400	
DIÂMETRO DAS CONEXÕES	SUCÇÃO - mm (in)	19,	05 (3/4)	
DIAMETRO DAS CONEXOES	EXPANSÃO - mm (in)	9,5	52 (3/8)	
DIÂMETRO DAS LINHAS	SUCÇÃO - mm (in)	19,05 (3/4)		
(Ver item Tubul. de Interligação)	EXPANSÃO - mm (in)	9,52 (3/8)		

Unidade Evaporadora 42XQ_60 com Unidade Condensadora 38C_060 - 220V

CÓDIGOS MAXIFLEX		42XQW60X5	38CCU060535MX	
CAPACIDADE NOMINAL REFRIG	16,71 (57000)			
ALIMENTAÇÃO (V-Ph-Hz)		220-3-60		
CORRENTE	NOMINAL (A)		19,0	
CORRENTE	MÁXIMA (A)		26,1	
POTÊNCIA	NOMINAL (W)	5500		
POTENCIA	MÁXIMA (W)		7482	
CABEAMENTO ELÉTRICO/DISJU	NTOR	Ver norn	na NBR 5410	
REFRIGERANTE		R	-410A	
SISTEMA DE EXPANSÃO	TIPO / TAMANHO	Pistão (Ad	ccurator) 0,078	
SISTEMA DE EXPANSAO	LOCAL	Conc	lensadora	
CARGA DE GÁS (g) (Até 7,5 m)		2825		
MASSA DO PRODUTO (PESO) SEM EMBALAGEM (kg)		40,1 60,4		
DIMENSÕES LxAxP (mm)		1645x233x628	623x759x623	
DISTÂNCIA EQUIVALENTE ENTF	RE UNIDADES (m)	30		
DESNÍVEL ENTRE UNIDADES (m	n)	10		
DIÂMETRO DO DRENO - mm (in)		19,05 (3/4)		
COMPRESSOR TIPO		Scroll		
V/ENITH ADOD	TIPO / QUANTIDADE	Siroco / 4	Axial / 1	
VENTILADOR	VAZÃO (m³/h)	2295	5326	
DIÂMETRO DAO CONEVÃEO	SUCÇÃO - mm (in)	22,	23 (7/8)	
DIÂMETRO DAS CONEXÕES	EXPANSÃO - mm (in)	9,52 (3/8)		
DIÂMETRO DAS LINHAS	SUCÇÃO - mm (in)	22,23 (7/8)		
(Ver item Tubul. de Interligação)	EXPANSÃO - mm (in)	9,52 (3/8)		

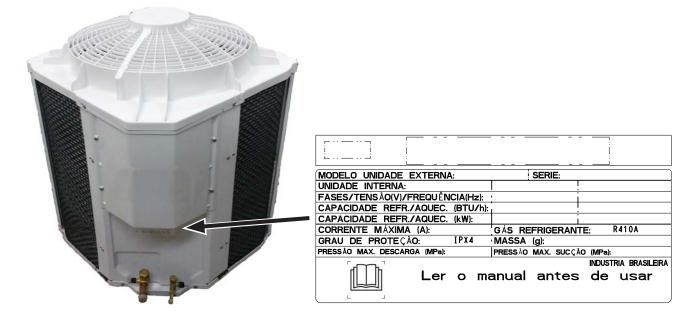
Unidade Evaporadora 42XQ_60 com Unidade Condensadora 38C_060 - 380V

CÓDIGOS MAXIFLEX		42XQW60X5 38CCU060235MX	
CAPACIDADE NOMINAL REFRIGERAÇÃO - kW (BTU/h)		16,71 (57000)	
ALIMENTAÇÃO (V-Ph-Hz)		380-3-60	
CORRENTE	NOMINAL (A)		11,0
CORRENTE	MÁXIMA (A)		15,0
POTÊNCIA	NOMINAL (W)	5500	
POTENCIA	MÁXIMA (W)		7482
CABEAMENTO ELÉTRICO/DISJU	INTOR	Ver norn	na NBR 5410
REFRIGERANTE		R	-410A
CICTEMA DE EVDANÇÃO	TIPO / TAMANHO	Pistão (Ad	ccurator) 0,078
SISTEMA DE EXPANSÃO	LOCAL	Cond	lensadora
CARGA DE GÁS (g) (Até 7,5 m)		2825	
MASSA DO PRODUTO (PESO) SEM EMBALAGEM (kg)		40,1 60,4	
DIMENSÕES LxAxP (mm)		1645x233x628	623x759x623
DISTÂNCIA EQUIVALENTE ENTR	RE UNIDADES (m)	30	
DESNÍVEL ENTRE UNIDADES (n	۱)	10	
DIÂMETRO DO DRENO - mm (in)		19,05 (3/4)	
COMPRESSOR TIPO		Scroll	
VENTUADOD	TIPO / QUANTIDADE	Siroco / 4	Axial / 1
VENTILADOR	VAZÃO (m³/h)	2295	5326
DIÂMETRO DAO CONEVÃEO	SUCÇÃO - mm (in)	22,	23 (7/8)
DIÂMETRO DAS CONEXÕES	EXPANSÃO - mm (in)	9,5	52 (3/8)
DIÂMETRO DAS LINHAS	SUCÇÃO - mm (in)	22,23 (7/8)	
(Ver item Tubul. de Interligação)	EXPANSÃO - mm (in)	9,52 (3/8)	

ANEXO I - TABELA DE CONVERSÃO REFRIGERANTE HFC-410A

Tabela de Conversão Refrigerante HFC-410A

Temperatura Saturação (°C) MPa (kg/cm²) (psi) -40 0,075 0,8 11 -39 0,083 0,8 12 -38 0,091 0,9 13 -37 0,100 1,0 14 -36 0,109 1,1 16 -35 0,118 1,2 17 -34 0,127 1,3 18 -33 0,137 1,4 20 -32 0,147 1,5 21 -31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22		Pressão de Vapor			
-39	-	MPa	(kg/cm²)	(psi)	
-38	-40	0,075	0,8	11	
-37	-39	0,083	0,8	12	
-36	-38	0,091	0,9	13	
-35 0,118 1,2 17 -34 0,127 1,3 18 -33 0,137 1,4 20 -32 0,147 1,5 21 -31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7	-37	0,100	1,0	14	
-34 0,127 1,3 18 -33 0,137 1,4 20 -32 0,147 1,5 21 -31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9	-36	0,109	1,1	16	
-33 0,137 1,4 20 -32 0,147 1,5 21 -31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0	-35	0,118	1,2	17	
-32 0,147 1,5 21 -31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2	-34	0,127	1,3	18	
-31 0,158 1,6 23 -30 0,169 1,7 24 -29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -18 0,329 3,4 48 -17 0,345 3,5 50 -18 0,329 3,4 48 -17 0,345 3,5 50 -18 0,362 3,7	-33	0,137	1,4	20	
-30	-32	0,147	1,5	21	
-29 0,180 1,8 26 -28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -18 0,329 3,4 48 -17 0,345 3,5 50 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -13 0,414 4,2 60 -14 0,396 4,0	-31	0,158	1,6	23	
-28 0,192 2,0 28 -27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0<	-30	0,169	1,7	24	
-27 0,204 2,1 30 -26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 </th <th>-29</th> <th>0,180</th> <th>1,8</th> <th>26</th>	-29	0,180	1,8	26	
-26 0,216 2,2 31 -25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 <th>-28</th> <th>0,192</th> <th>2,0</th> <th>28</th>	-28	0,192	2,0	28	
-25 0,229 2,3 33 -24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9	-27	0,204	2,1	30	
-24 0,242 2,5 35 -23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -13 0,414 4,2 60 -12 0,432 4,4 63 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 <th>-26</th> <th>0,216</th> <th>2,2</th> <th>31</th>	-26	0,216	2,2	31	
-23 0,255 2,6 37 -22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1	-25	0,229	2,3	33	
-22 0,269 2,7 39 -21 0,284 2,9 41 -20 0,298 3,0 43 -19 0,313 3,2 45 -18 0,329 3,4 48 -17 0,345 3,5 50 -16 0,345 3,5 50 -16 0,362 3,7 52 -15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1	-24	0,242	2,5	35	
-21	-23	0,255	2,6	37	
-20	-22	0,269	2,7	39	
-19	-21	0,284	2,9	41	
-18	-20	0,298	3,0	43	
-17	-19	0,313	3,2	45	
-16	-18	0,329	3,4	48	
-15 0,379 3,9 55 -14 0,396 4,0 57 -13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 <	-17	0,345	3,5	50	
-14	-16	0,362	3,7	52	
-13 0,414 4,2 60 -12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 <td< th=""><th>-15</th><th>0,379</th><th>3,9</th><th>55</th></td<>	-15	0,379	3,9	55	
-12 0,432 4,4 63 -11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9	-14	0,396	4,0	57	
-11 0,451 4,6 65 -10 0,471 4,8 68 -9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 1	-13	0,414	4,2	60	
-10	-12	0,432	4,4	63	
-9 0,491 5,0 71 -8 0,511 5,2 74 -7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-11	0,451	4,6	65	
-8	-10	0,471	4,8	68	
-7 0,532 5,4 77 -6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-9	0,491	5,0	71	
-6 0,554 5,6 80 -5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-8	0,511	5,2	74	
-5 0,576 5,9 84 -4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-7	0,532	5,4	77	
-4 0,599 6,1 87 -3 0,622 6,3 90 -2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-6	0,554	5,6	80	
-3	-5	0,576	5,9	84	
-2 0,646 6,6 94 -1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-4	0,599	6,1	87	
-1 0,670 6,8 97 0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-3	0,622	6,3	90	
0 0,695 7,1 101 1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-2	0,646	6,6	94	
1 0,721 7,4 105 2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	-1	0,670	6,8	97	
2 0,747 7,6 108 3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	0	0,695		101	
3 0,774 7,9 112 4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	1	0,721	7,4	105	
4 0,802 8,2 116 5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147		0,747	7,6	108	
5 0,830 8,5 120 6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	3	0,774	7,9	112	
6 0,859 8,8 124 7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147		0,802	8,2		
7 0,888 9,1 129 8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147		0,830	8,5		
8 0,918 9,4 133 9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	6	0,859	8,8	124	
9 0,949 9,7 138 10 0,981 10,0 142 11 1,013 10,3 147	7	0,888	9,1	129	
10 0,981 10,0 142 11 1,013 10,3 147	8	0,918	9,4	133	
11 1,013 10,3 147	9	0,949	9,7	138	
	10	0,981	10,0	142	
12 1,046 10,7 152	11	1,013	10,3	147	
	12	1,046	10,7	152	


Temperatura Saturação (°C) MPa (kg/cm²) (psi) 13 1,080 11,0 157 14 1,114 11,4 162 15 1,150 11,7 167 16 1,186 12,1 172 17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258	
13 1,080 11,0 157 14 1,114 11,4 162 15 1,150 11,7 167 16 1,186 12,1 172 17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 <th>)</th>)
14 1,114 11,4 162 15 1,150 11,7 167 16 1,186 12,1 172 17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 <th></th>	
15 1,150 11,7 167 16 1,186 12,1 172 17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 <td>7</td>	7
16 1,186 12,1 172 17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 <td>2</td>	2
17 1,222 12,5 177 18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	7
18 1,260 12,9 183 19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	2
19 1,298 13,2 188 20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	7
20 1,338 13,6 194 21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	3
21 1,378 14,1 200 22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	3
22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	1
22 1,418 14,5 206 23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318)
23 1,460 14,9 212 24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	5
24 1,503 15,3 218 25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	2
25 1,546 15,8 224 26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	3
26 1,590 16,2 231 27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
27 1,636 16,7 237 28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
28 1,682 17,2 244 29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
29 1,729 17,6 251 30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
30 1,777 18,1 258 31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
31 1,826 18,6 265 32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
32 1,875 19,1 272 33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
33 1,926 19,6 279 34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
34 1,978 20,2 287 35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
35 2,031 20,7 294 36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
36 2,084 21,3 302 37 2,139 21,8 310 38 2,195 22,4 318	
37 2,139 21,8 310 38 2,195 22,4 318	
38 2,195 22,4 318	
20 222 220 227	
39 2,252 23,0 327 40 2,310 23,6 335	
43 2,490 25,4 361	
44 2,552 26,0 370	
45 2,616 26,7 379	
46 2,680 27,3 389	
47 2,746 28,0 398	
48 2,813 28,7 408	
49 2,881 29,4 418	
50 2,950 30,1 428	
51 3,021 30,8 438	
52 3,092 31,5 448	
53 3,165 32,3 459	
54 3,240 33,0 470	
55 3,315 33,8 481	
56 3,392 34,6 492	
57 3,470 35,4 503	
58 3,549 36,2 515	
59 3,630 37,0 526	
60 3,712 37,9 538	
61 3,796 38,7 550)
62 3,881 39,6 563	
63 3,967 40,5 575	5
64 4,055 41,4 588	
65 4,144 42,3 601	3

ANEXO II - ETIQUETA DE CAPACIDADE UNIDADES CONDENSADORAS

A etiqueta de capacidade das unidades condensadoras está localizada externamente conforme indicado nas figuras abaixo. Nesta etiqueta constam o modelo e o número de série das unidades, dados técnicos tais como: tensão, frequência, fase, capacidade, consumo/corrente (em refrigeração e em aquecimento), além do tipo e carga de gás refrigerante que a unidade condensadora sai de fábrica.

Unidade Condensadora 38C

ATENÇÃO

Para realizar o cálculo correto da carga de gás adicional (referente a instalação do seu equipamento), veja o procedimento, os exemplos e os valores indicados na tabela do subitem 6.8 - Adição de Carga de Refrigerante neste manual.

ANOTAÇÕES

58

MHXIFLEX

CLIMAZON INDUSTRIAL LTDA

Av. Torquato Tapajós, 7937 Lotes 14 e 14B Bairro Tarumã - Manaus - AM CEP: 69.041-025 CNPJ: 04.222.931/0001-95

- * Euromonitor International Limited; Eletrodomésticos para consumidores, edição 2020, de acordo com as definições da categoria de eletrodomésticos grandes, volume do produtor em unidades, dados de 2019.
- ** Euromonitor International Limited; Eletrodomésticos para consumidores, edição 2020, volume do produtor em unidades, dados de 2019.